Suppr超能文献

通过糖苷的多功能 C(sp^3)-H 糖苷化合成 C-寡糖。

Synthesis of C-Oligosaccharides through Versatile C(sp )-H Glycosylation of Glycosides.

机构信息

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany.

DZHK (German Centre for Cardiovascular Research), Potsdamer Straße 58, 10785, Berlin, Germany.

出版信息

Angew Chem Int Ed Engl. 2022 Mar 7;61(11):e202114993. doi: 10.1002/anie.202114993. Epub 2022 Jan 27.

Abstract

C-oligosaccharides are pharmacologically relevant because they are more hydrolysis-resistant than O-oligosaccharides. Despite indisputable advances, C-oligosaccharides continue to be underdeveloped, likely due to a lack of efficient and selective strategies for the assembly of the interglycosidic C-C linkages. In contrast, we, herein, report a versatile and robust strategy for the synthesis of structurally complex C-oligosaccharides via catalyzed C(sp )-H activations. Thus, a wealth of complex interglycosidic (2→1)- and (1→1)-C-oligosaccharides becomes readily available by palladium-catalyzed C(sp )-H glycoside glycosylation. The isolation of key palladacycle intermediates and experiments with isotopically-labeled compounds identified a trans-stereoselectivity for the C(sp )-H glycosylation. The glycoside C(sp )-H activation manifold was likewise exploited for the diversification of furanoses, pyranoses and disaccharides.

摘要

C-寡糖在药理学上具有重要意义,因为它们比 O-寡糖更不易水解。尽管取得了无可争议的进展,但 C-寡糖的开发仍相对滞后,这可能是由于缺乏高效和选择性的策略来构建糖苷键间的 C-C 键。相比之下,我们在此报告了一种通过催化 C(sp3)-H 活化来合成结构复杂的 C-寡糖的通用且强大的策略。因此,通过钯催化的 C(sp3)-H 糖苷糖苷化,丰富的复杂糖苷键(2→1)-和(1→1)-C-寡糖可以轻易获得。关键钯配合物中间体的分离和同位素标记化合物的实验确定了 C(sp3)-H 糖基化的反式立体选择性。同样,糖苷 C(sp3)-H 活化方式也被用于呋喃糖、吡喃糖和二糖的多样化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef3a/9306939/87d05b137602/ANIE-61-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验