Suppr超能文献

生物过程在组织和细胞亚群中的差异活性可以阐明与疾病相关的过程和细胞类型特征。

The differential activity of biological processes in tissues and cell subsets can illuminate disease-related processes and cell-type identities.

机构信息

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.

Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Bioinformatics. 2022 Mar 4;38(6):1584-1592. doi: 10.1093/bioinformatics/btab883.

Abstract

MOTIVATION

The distinct functionalities of human tissues and cell types underlie complex phenotype-genotype relationships, yet often remain elusive. Harnessing the multitude of bulk and single-cell human transcriptomes while focusing on processes can help reveal these distinct functionalities.

RESULTS

The Tissue-Process Activity (TiPA) method aims to identify processes that are preferentially active or under-expressed in specific contexts, by comparing the expression levels of process genes between contexts. We tested TiPA on 1579 tissue-specific processes and bulk tissue transcriptomes, finding that it performed better than another method. Next, we used TiPA to ask whether the activity of certain processes could underlie the tissue-specific manifestation of 1233 hereditary diseases. We found that 21% of the disease-causing genes indeed participated in such processes, thereby illuminating their genotype-phenotype relationships. Lastly, we applied TiPA to single-cell transcriptomes of 108 human cell types, revealing that process activities often match cell-type identities and can thus aid annotation efforts. Hence, differential activity of processes can highlight the distinct functionality of tissues and cells in a robust and meaningful manner.

AVAILABILITY AND IMPLEMENTATION

TiPA code is available in GitHub (https://github.com/moranshar/TiPA). In addition, all data are available as part of the Supplementary Material.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

人体组织和细胞类型的独特功能是复杂表型-基因型关系的基础,但这些功能常常难以捉摸。利用大量的人体批量和单细胞转录组数据,并专注于研究过程,可以帮助揭示这些独特的功能。

结果

组织-过程活性(TiPA)方法旨在通过比较不同环境下过程基因的表达水平,来识别在特定环境下优先活跃或表达不足的过程。我们在 1579 个组织特异性过程和批量组织转录组上测试了 TiPA,发现它的性能优于另一种方法。接下来,我们使用 TiPA 来询问某些过程的活性是否可以解释 1233 种遗传性疾病在特定组织中的表现。我们发现,21%的致病基因确实参与了这些过程,从而阐明了它们的基因型-表型关系。最后,我们将 TiPA 应用于 108 个人类细胞类型的单细胞转录组,发现过程活性通常与细胞类型身份相匹配,因此可以辅助注释工作。因此,过程的差异活性可以以稳健且有意义的方式突出组织和细胞的独特功能。

可用性和实施

TiPA 代码可在 GitHub(https://github.com/moranshar/TiPA)上获得。此外,所有数据均可作为补充材料的一部分获得。

补充信息

补充数据可在生物信息学在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验