Suppr超能文献

利用数字 NanoString nCounter 平台开发和验证简洁的结核病基因特征。

Development and Validation of a Parsimonious Tuberculosis Gene Signature Using the digital NanoString nCounter Platform.

机构信息

Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.

Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.

出版信息

Clin Infect Dis. 2022 Sep 29;75(6):1022-1030. doi: 10.1093/cid/ciac010.

Abstract

BACKGROUND

Blood-based biomarkers for diagnosing active tuberculosis (TB), monitoring treatment response, and predicting risk of progression to TB disease have been reported. However, validation of the biomarkers across multiple independent cohorts is scarce. A robust platform to validate TB biomarkers in different populations with clinical end points is essential to the development of a point-of-care clinical test. NanoString nCounter technology is an amplification-free digital detection platform that directly measures mRNA transcripts with high specificity. Here, we determined whether NanoString could serve as a platform for extensive validation of candidate TB biomarkers.

METHODS

The NanoString platform was used for performance evaluation of existing TB gene signatures in a cohort in which signatures were previously evaluated on an RNA-seq dataset. A NanoString codeset that probes 107 genes comprising 12 TB signatures and 6 housekeeping genes (NS-TB107) was developed and applied to total RNA derived from whole blood samples of TB patients and individuals with latent TB infection (LTBI) from South India. The TBSignatureProfiler tool was used to score samples for each signature. An ensemble of machine learning algorithms was used to derive a parsimonious biomarker.

RESULTS

Gene signatures present in NS-TB107 had statistically significant discriminative power for segregating TB from LTBI. Further analysis of the data yielded a NanoString 6-gene set (NANO6) that when tested on 10 published datasets was highly diagnostic for active TB.

CONCLUSIONS

The NanoString nCounter system provides a robust platform for validating existing TB biomarkers and deriving a parsimonious gene signature with enhanced diagnostic performance.

摘要

背景

已有研究报道了用于诊断活动性肺结核(TB)、监测治疗反应和预测 TB 发病风险的基于血液的生物标志物。然而,这些生物标志物在多个独立队列中的验证却很少。建立一个稳健的平台,用于在具有临床终点的不同人群中验证 TB 生物标志物,对于开发即时护理临床检验至关重要。NanoString nCounter 技术是一种无需扩增的数字检测平台,可高度特异性地直接测量 mRNA 转录物。在此,我们确定 NanoString 是否可以作为验证候选 TB 生物标志物的平台。

方法

我们使用 NanoString 平台对先前在 RNA-seq 数据集上进行评估的队列中的现有 TB 基因特征进行性能评估。开发了一个包含 12 个 TB 特征和 6 个管家基因的 NanoString 检测集(NS-TB107),并应用于来自印度南部的 TB 患者和潜伏性 TB 感染(LTBI)个体的全血样本中的总 RNA。使用 TBSignatureProfiler 工具对每个特征进行评分。使用集成机器学习算法来推导一个简约的生物标志物。

结果

NS-TB107 中的基因特征在区分 TB 与 LTBI 方面具有统计学上显著的区分能力。对数据的进一步分析得出了一个 NanoString 6 基因集(NANO6),当在 10 个已发表的数据集上进行测试时,对活动性 TB 具有高度诊断价值。

结论

NanoString nCounter 系统为验证现有的 TB 生物标志物和推导出具有增强诊断性能的简约基因特征提供了一个稳健的平台。

相似文献

10
Undernutrition as a risk factor for tuberculosis disease.营养不良是结核病的一个风险因素。
Cochrane Database Syst Rev. 2024 Jun 11;6(6):CD015890. doi: 10.1002/14651858.CD015890.pub2.

本文引用的文献

1
Longitudinal Dynamics of a Blood Transcriptomic Signature of Tuberculosis.结核血液转录组特征的纵向动态变化
Am J Respir Crit Care Med. 2021 Dec 15;204(12):1463-1472. doi: 10.1164/rccm.202103-0548OC.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验