Suppr超能文献

在日常活动中,天然髋关节中双相关节软骨的多尺度生物力学。

Multiscale biomechanics of the biphasic articular cartilage in the natural hip joint during routine activities.

机构信息

Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge, United Kingdom; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.

Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China.

出版信息

Comput Methods Programs Biomed. 2022 Mar;215:106606. doi: 10.1016/j.cmpb.2021.106606. Epub 2021 Dec 26.

Abstract

BACKGROUND AND OBJECTIVE

The investigation of the biomechanical behaviour of the articular cartilage (AC) under physiological loading is important to understand the joint function and onset of pathologies. This study aimed to develop a multiscale computational modelling approach and apply the approach to investigate the time-dependant biphasic behaviour of the AC in the natural hip joint under repetitive physiological loading over 80 cycles amongst six routine activities.

METHODS

A subject-specific musculoskeletal multibody dynamics (MBD) model was developed based on the anthropometry and motion capture data collected for a male subject. A corresponding FE model of the natural hip joint with biphasic AC was created based on the bone geometries exported from the MBD model. A multiscale computational modelling was then developed to couple the MBD model and the FE model and used to investigate the time-dependant biphasic behaviour of the AC under subject-specific physiological loading over 80 cycles amongst six routine activities.

RESULTS

The results showed that for all the activities considered, the interstitial fluid pressure in the AC supported over 80% of the loading. The maximum values of the peak contact pressure and peak fluid pressure for the whole cycle increased firstly and then remained stable over time from the 1st cycle to the 80th cycle. At these instants, the contact areas were located at the centre region of the AC. By contrast, when the contact area was located at the edge of the AC, these peak pressures were found to increase over time for some of the activities (squat, ascending stairs, descending stairs) but decrease for the other activities (normal walking, standing up, sitting down).

CONCLUSION

This study for the first time developed a multiscale computational modelling approach to couple a musculoskeletal MBD model of the body and a detailed FE model of the natural hip joint with biphasic AC, which enabled the evaluation of time-dependant biphasic behaviour of the AC under realistic physiological loading conditions. The study may have important implications in biomechanical studies of human cartilage to understand the joint function and biomechanical factors related to joint disease, and to support the development of cartilage substitution.

摘要

背景与目的

研究关节软骨(AC)在生理负荷下的生物力学行为对于理解关节功能和发病机制非常重要。本研究旨在开发一种多尺度计算建模方法,并应用该方法研究在 80 个周期的 6 种常规活动中,重复生理负荷下自然髋关节中 AC 的时变双相行为。

方法

基于对一名男性受试者进行的人体测量学和运动捕捉数据,开发了一个基于个体的肌肉骨骼多体动力学(MBD)模型。根据从 MBD 模型导出的骨骼几何形状,创建了具有双相 AC 的自然髋关节的相应有限元模型。然后开发了一种多尺度计算建模方法,将 MBD 模型和 FE 模型耦合起来,用于研究在 6 种常规活动中,80 个周期内特定于个体的生理负荷下 AC 的时变双相行为。

结果

结果表明,对于所有考虑的活动,AC 中的间质液压力支撑了超过 80%的载荷。整个周期内的峰值接触压力和峰值流体压力的最大值在从第 1 个周期到第 80 个周期的时间内先增加然后保持稳定。在这些时刻,接触区域位于 AC 的中心区域。相比之下,当接触区域位于 AC 的边缘时,在一些活动(下蹲、上楼梯、下楼梯)中,这些峰值压力随时间增加,但在其他活动(正常行走、站立、坐下)中则减少。

结论

本研究首次开发了一种多尺度计算建模方法,将身体的肌肉骨骼 MBD 模型和具有双相 AC 的自然髋关节的详细 FE 模型耦合起来,从而能够在真实的生理负荷条件下评估 AC 的时变双相行为。该研究可能对理解关节功能和与关节疾病相关的生物力学因素的人类软骨生物力学研究具有重要意义,并为软骨替代物的开发提供支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验