Suppr超能文献

通过 RNA 测序分析鉴定精神分裂症早期诊断的潜在血液生物标志物。

Identification of potential blood biomarkers for early diagnosis of schizophrenia through RNA sequencing analysis.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.

Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.

出版信息

J Psychiatr Res. 2022 Mar;147:39-49. doi: 10.1016/j.jpsychires.2022.01.003. Epub 2022 Jan 5.

Abstract

Schizophrenia (SCZ) is a highly heritable, polygenic complex mental disorder with imprecise diagnostic boundaries. Finding sensitive and specific novel biomarkers to improve the biological homogeneity of SCZ diagnosis is still one of the research hotspots. To identify the blood specific diagnostic biomarkers of SCZ, we performed RNA sequencing (RNA-seq) on 30 peripheral blood samples from 15 first-episode drug-naïve SCZ patients and 15 healthy controls (CTL). By performing multiple bioinformatics analysis algorithms based on RNA-seq data and microarray datasets, including differential expression genes (DEGs) analysis, WGCNA and CIBERSORT, we first identified 6 specific key genes (TOMM7, SNRPG, KRT1, AQP10, TMEM14B and CLEC12A) in SCZ. Moreover, we found that the proportions of lymphocyte, monocyte and neutrophils were significantly distinct in SCZ patients with CTL samples. Therefore, combining various features including age, sex and the novel blood biomarkers, we constructed the risk prediction model with three classifiers (RF: Random Forest; SVM: support vector machine; DT: decision tree) through repeated k-fold cross validation ensuring better generalizability. Finest result of Area under Receiver Operating Characteristic (AUROC) score of 0.91 was achieved by RF classifier and with a comparable good performance of AUROC 0.77 in external validation dataset. A lower AUROC of 0.63 was demonstrated when it was further applied to a Bipolar disorder (BPD) cohort. In conclusion, the study identified three peripheral core immunocytes and six key genes associated with the occurrence of SCZ, and further studies are required to test and validate these novel biomarkers for early diagnosis and treatment of SCZ.

摘要

精神分裂症 (SCZ) 是一种高度遗传、多基因的复杂精神障碍,其诊断界限不精确。寻找敏感和特异的新型生物标志物来提高 SCZ 诊断的生物学同质性仍然是研究热点之一。为了确定 SCZ 的血液特异性诊断生物标志物,我们对 30 名首发未经药物治疗的 SCZ 患者和 15 名健康对照者(CTL)的 30 份外周血样本进行了 RNA 测序(RNA-seq)。通过对 RNA-seq 数据和微阵列数据集进行多个基于生物信息学的分析算法,包括差异表达基因(DEGs)分析、WGCNA 和 CIBERSORT,我们首先在 SCZ 中鉴定出 6 个特定的关键基因(TOMM7、SNRPG、KRT1、AQP10、TMEM14B 和 CLEC12A)。此外,我们发现 SCZ 患者的淋巴细胞、单核细胞和中性粒细胞比例与 CTL 样本明显不同。因此,我们结合了包括年龄、性别和新的血液生物标志物在内的各种特征,通过重复 k 折交叉验证构建了具有三个分类器(RF:随机森林;SVM:支持向量机;DT:决策树)的风险预测模型,以确保更好的通用性。RF 分类器的最佳接收者操作特征曲线(AUROC)评分结果为 0.91,在外部验证数据集上也具有相当好的 AUROC 0.77 性能。当进一步应用于双相障碍(BPD)队列时,AUROC 较低,为 0.63。总之,该研究确定了与 SCZ 发生相关的三个外周核心免疫细胞和六个关键基因,需要进一步研究来测试和验证这些新型生物标志物,以实现 SCZ 的早期诊断和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验