Department of Radiology, MedStar Georgetown University Hospital, 3800 Reservoir Road, NW CG201, Washington DC, 20007, USA.
Department of Medical Imaging, University of Toronto, 151 College St, Toronto, ON, M5S 3E2, Canada.
J Digit Imaging. 2022 Apr;35(2):335-339. doi: 10.1007/s10278-021-00547-x. Epub 2022 Jan 11.
Preparing radiology examinations for interpretation requires prefetching relevant prior examinations and implementing hanging protocols to optimally display the examination along with comparisons. Body part is a critical piece of information to facilitate both prefetching and hanging protocols, but body part information encoded using the Digital Imaging and Communications in Medicine (DICOM) standard is widely variable, error-prone, not granular enough, or missing altogether. This results in inappropriate examinations being prefetched or relevant examinations left behind; hanging protocol optimization suffers as well. Modern artificial intelligence (AI) techniques, particularly when harnessing federated deep learning techniques, allow for highly accurate automatic detection of body part based on the image data within a radiological examination; this allows for much more reliable implementation of this categorization and workflow. Additionally, new avenues to further optimize examination viewing such as dynamic hanging protocol and image display can be implemented using these techniques.
准备进行影像学解读的检查需要预取相关的既往检查,并实施悬挂协议,以最佳方式显示检查并进行比较。身体部位是促进预取和悬挂协议的关键信息,但使用数字成像和通信在医学(DICOM)标准中编码的身体部位信息广泛存在易出错、不够细致或完全缺失的问题。这会导致不适当的检查被预取或相关的检查被遗漏;悬挂协议的优化也会受到影响。现代人工智能(AI)技术,特别是在利用联邦深度学习技术时,可以根据影像学检查中的图像数据,实现高度准确的身体部位自动检测;这使得更可靠地实现这种分类和工作流程成为可能。此外,还可以使用这些技术来实现进一步优化检查查看的新途径,如动态悬挂协议和图像显示。