Suppr超能文献

基于 DICOM 元数据分类器的自动选择腹部 MRI 序列和基于像素分类器的选择性使用。

Automated selection of abdominal MRI series using a DICOM metadata classifier and selective use of a pixel-based classifier.

机构信息

Duke University School of Medicine, Durham, NC, 27710, USA.

出版信息

Abdom Radiol (NY). 2024 Oct;49(10):3735-3746. doi: 10.1007/s00261-024-04379-5. Epub 2024 Jun 11.

Abstract

Accurate, automated MRI series identification is important for many applications, including display ("hanging") protocols, machine learning, and radiomics. The use of the series description or a pixel-based classifier each has limitations. We demonstrate a combined approach utilizing a DICOM metadata-based classifier and selective use of a pixel-based classifier to identify abdominal MRI series. The metadata classifier was assessed alone as Group metadata and combined with selective use of the pixel-based classifier for predictions with less than 70% certainty (Group combined). The overall accuracy (mean and 95% confidence intervals) for Groups metadata and combined on the test dataset were 0.870 CI (0.824,0.912) and 0.930 CI (0.893,0.963), respectively. With this combined metadata and pixel-based approach, we demonstrate accurate classification of 95% or greater for all pre-contrast MRI series and improved performance for some post-contrast series.

摘要

准确、自动的 MRI 序列识别对于许多应用非常重要,包括显示(“悬挂”)协议、机器学习和放射组学。使用序列描述或基于像素的分类器都有其局限性。我们展示了一种结合使用基于 DICOM 元数据的分类器和选择性使用基于像素的分类器的方法,用于识别腹部 MRI 序列。元数据分类器单独评估为 Group metadata,并与选择性使用基于像素的分类器结合使用,用于预测准确率低于 70%的情况(Group combined)。在测试数据集上,Group metadata 和 combined 的总体准确率(平均值和 95%置信区间)分别为 0.870 CI(0.824,0.912)和 0.930 CI(0.893,0.963)。通过这种结合元数据和基于像素的方法,我们证明了对于所有对比前的 MRI 序列,可以实现 95%或更高的准确分类,并提高了一些对比后的序列的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验