Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States.
NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, Maryland 20771, United States.
Environ Sci Technol. 2022 Feb 1;56(3):1544-1556. doi: 10.1021/acs.est.1c05578. Epub 2022 Jan 12.
Forecasting ambient PM concentrations with spatiotemporal coverage is key to alerting decision makers of pollution episodes and preventing detrimental public exposure, especially in regions with limited ground air monitoring stations. The existing methods rely on either chemical transport models (CTMs) to forecast spatial distribution of PM with nontrivial uncertainty or statistical algorithms to forecast PM concentration time series at air monitoring locations without continuous spatial coverage. In this study, we developed a PM forecast framework by combining the robust Random Forest algorithm with a publicly accessible global CTM forecast product, NASA's Goddard Earth Observing System "Composition Forecasting" (GEOS-CF), providing spatiotemporally continuous PM concentration forecasts for the next 5 days at a 1 km spatial resolution. Our forecast experiment was conducted for a region in Central China including the populous and polluted Fenwei Plain. The forecast for the next 2 days had an overall validation of 0.76 and 0.64, respectively; the was around 0.5 for the following 3 forecast days. Spatial cross-validation showed similar validation metrics. Our forecast model, with a validation normalized mean bias close to 0, substantially reduced the large biases in GEOS-CF. The proposed framework requires minimal computational resources compared to running CTMs at urban scales, enabling near-real-time PM forecast in resource-restricted environments.
具有时空覆盖范围的环境 PM 浓度预测对于提醒决策者注意污染事件并防止公众受到有害暴露至关重要,特别是在地面空气监测站有限的地区。现有的方法要么依赖于化学输送模型 (CTM) 来预测 PM 的空间分布,但其存在较大不确定性,要么依赖于统计算法来预测没有连续空间覆盖的空气监测点的 PM 浓度时间序列。在这项研究中,我们结合强大的随机森林算法和可公开获取的全球 CTM 预测产品(美国国家航空航天局的地球观测系统“成分预测”(GEOS-CF)),开发了一个 PM 预测框架,为下一个 5 天提供时空连续的 PM 浓度预测,空间分辨率为 1 公里。我们的预测实验是在中国中部的一个地区进行的,包括人口众多且污染严重的汾渭平原。接下来 2 天的预测整体验证分别为 0.76 和 0.64;接下来 3 天的预测分别为 0.5 左右。空间交叉验证显示出类似的验证指标。与在城市尺度上运行 CTM 相比,我们的预测模型所需的计算资源最少,能够在资源有限的环境中实现近实时的 PM 预测。