Kong Xinke, Gai Panpan, Li Feng
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
ACS Appl Bio Mater. 2020 Nov 16;3(11):8069-8074. doi: 10.1021/acsabm.0c01166. Epub 2020 Oct 22.
Biohybrid photoelectrochemical systems could combine the light-harvesting ability of semiconductor photocatalysts and the CO-processing capability of biocatalysts to realize CO reduction. How to develop the energy-utilized model can be of importance for the mechanism exploration of photosynthesis. Here, a biohybrid photoelectrochemical system based on HCOO-CO circulation was developed to realize the conversion both of solar-to-electric energy and chemical-to-electric energy. The device consists of a TiO nanoparticle photoanode and a laser-scribed graphene/formate dehydrogenase biocathode, which was utilized for the formic acid oxidation and the biocatalysis reduction of CO to HCOO, respectively. The as-proposed biohybrid photoelectrochemical system exhibits good performance with an open-circuit potential of 0.93 V and a maximum power output density of 76 μW cm. This ingenious strategy not only exploits a robust carbon circulation system for the conversion of solar energy but also provides a way of constructing complex artificial photosynthesis systems.
生物杂交光电化学系统可以将半导体光催化剂的光捕获能力与生物催化剂的CO处理能力相结合,以实现CO还原。如何开发能量利用模型对于光合作用的机理探索可能具有重要意义。在此,开发了一种基于HCOO-CO循环的生物杂交光电化学系统,以实现太阳能到电能以及化学能到电能的转换。该装置由TiO纳米颗粒光阳极和激光刻写石墨烯/甲酸脱氢酶生物阴极组成,分别用于甲酸氧化和CO生物催化还原为HCOO。所提出的生物杂交光电化学系统表现出良好的性能,开路电位为0.93 V,最大功率输出密度为76 μW/cm²。这种巧妙的策略不仅开发了一种用于太阳能转换的强大碳循环系统,还提供了一种构建复杂人工光合作用系统的方法。