State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China.
University of Science and Technology of China, Hefei230026, China.
J Am Chem Soc. 2022 Dec 21;144(50):23073-23080. doi: 10.1021/jacs.2c10445. Epub 2022 Dec 11.
Solar-to-fuel conversion followed by secondary utilization in fuel cells provides an appealing approach to alleviating global energy shortages but is largely restricted by the complex design of power systems and the development of functional catalysts. Herein, we presented a biohybrid photoelectrochemical cell (BPEC) to implement sustainable solar-to-fuel-to-electric power conversion in a single compartment, by ingeniously combining reliable photoelectrochemical HO generation with efficient bioelectrochemical HO consumption. Specifically, the BPEC is composed of a Mo-modified BiVO (Mo:BiVO) photoanode and a horseradish peroxidase (HRP)/pyrene-modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (bis-Pyr-ABTS)/carbon nanotubes with an encapsulated Co nanoparticle (Co/CNTs) biocathode. Upon photoexcitation, two-electron HO oxidation can be carried out at the Mo-BiVO photoanode to produce HO, followed by electroenzymatic reduction of HO to HO by HRP with the help of a bis-Pyr-ABTS redox mediator at the biocathode. Besides, in response to the insufficient Faradaic efficiency of HO generation at the photoanode, the functional Co/CNTs catalysts, possessing prominent electrocatalytic selectivity toward two-electron O reduction (electron transfer number = 2.6), are modified on the biocathode, thus clearly defining effective HO/HO/O self-circulation in this device. This developed BPEC obtains an open-circuit potential of 1.03 ± 0.02 V and a maximum power density of 0.18 ± 0.02 mW cm. Moreover, inspired by the particular advantage of enzymatic biofuel cells for easy miniaturization, an enclosed "sandwich-like" BPEC of approximately 1 cm size is fabricated and delivers a power output of 0.13 ± 0.03 mW cm. Our work represents a controllable approach for meaningful solar energy utilization, beyond traditional artificial photosynthesis, and can further provide a significant paradigm shift in building an energy-sustainable society.
太阳能到燃料的转化,随后在燃料电池中进行二次利用,为缓解全球能源短缺提供了一种有吸引力的方法,但在很大程度上受到复杂的电力系统设计和功能催化剂开发的限制。在这里,我们提出了一种生物混合光电化学电池(BPEC),通过巧妙地结合可靠的光电化学 HO 生成和高效的生物电化学 HO 消耗,在单个隔室中实现可持续的太阳能到燃料到电能的转换。具体来说,BPEC 由 Mo 修饰的 BiVO(Mo:BiVO)光阳极和辣根过氧化物酶(HRP)/芘修饰的 2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)(bis-Pyr-ABTS)/碳纳米管与包裹的 Co 纳米颗粒(Co/CNTs)生物阴极组成。在光激发下,Mo-BiVO 光阳极可以进行两电子 HO 氧化,产生 HO,然后在生物阴极上,在 bis-Pyr-ABTS 氧化还原介体的帮助下,由 HRP 将 HO 电酶还原为 HO。此外,针对光阳极 HO 生成的法拉第效率不足的问题,在生物阴极上修饰了具有显著两电子 O 还原电催化选择性(电子转移数=2.6)的功能 Co/CNTs 催化剂,从而在该装置中明确定义了有效的 HO/HO/O 自循环。所开发的 BPEC 获得 1.03±0.02V 的开路电位和 0.18±0.02mW cm 的最大功率密度。此外,受酶生物燃料电池易于小型化的特殊优势的启发,制造了一个约 1cm 尺寸的封闭的“三明治状”BPEC,可提供 0.13±0.03mW cm 的功率输出。我们的工作代表了一种超越传统人工光合作用的可控方法,用于有意义地利用太阳能,并可为建立能源可持续社会提供重大的范式转变。