Suppr超能文献

卡尔文-本森循环的补料通量:氢同位素证据表明 C 代谢中体内发生。

Anaplerotic flux into the Calvin-Benson cycle: hydrogen isotope evidence for in vivo occurrence in C metabolism.

机构信息

Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90187, Sweden.

Research Institute on Terrestrial Ecosystems, National Research Council, Porano (TR), 05010, Italy.

出版信息

New Phytol. 2022 Apr;234(2):405-411. doi: 10.1111/nph.17957. Epub 2022 Feb 2.

Abstract

As the central carbon uptake pathway in photosynthetic cells, the Calvin-Benson cycle is among the most important biochemical cycles for life on Earth. A carbon flux of anaplerotic origin (i.e. through the chloroplast-localized oxidative branch of the pentose phosphate pathway) into the Calvin-Benson cycle was proposed recently. Here, we measured intramolecular deuterium abundances in leaf starch of Helianthus annuus grown at varying ambient CO concentrations, C . Additionally, we modelled deuterium fractionations expected for the anaplerotic pathway and compared modelled with measured fractionations. We report deuterium fractionation signals at H and H of starch glucose. Below a C change point, these signals increase with decreasing C consistent with modelled fractionations by anaplerotic flux. Under standard conditions (C  = 450 ppm corresponding to intercellular CO concentrations, C , of 328 ppm), we estimate negligible anaplerotic flux. At C  = 180 ppm (C  = 140 ppm), more than 10% of the glucose-6-phosphate entering the starch biosynthesis pathway is diverted into the anaplerotic pathway. In conclusion, we report evidence consistent with anaplerotic carbon flux into the Calvin-Benson cycle in vivo. We propose the flux may help to: maintain high levels of ribulose 1,5-bisphosphate under source-limited growth conditions to facilitate photorespiratory nitrogen assimilation required to build-up source strength; and counteract oxidative stress.

摘要

作为光合细胞的中心碳吸收途径,卡尔文-本森循环是地球上生命最重要的生化循环之一。最近有人提出,来自补加碳源(即通过叶绿体定位的磷酸戊糖途径的氧化分支)的碳通量进入卡尔文-本森循环。在这里,我们测量了在不同环境 CO 浓度(C)下生长的向日葵叶片淀粉中分子内的氘丰度。此外,我们还对补加途径的预期氘分馏进行了建模,并将模型与实测分馏进行了比较。我们报告了淀粉葡萄糖的 H 和 H 的氘分馏信号。在 C 变化点以下,这些信号随着 C 的降低而增加,与补加通量的模型分馏一致。在标准条件下(C  = 450 ppm,对应于胞间 CO 浓度,C  = 328 ppm),我们估计补加通量可以忽略不计。在 C  = 180 ppm(C  = 140 ppm)时,进入淀粉生物合成途径的葡萄糖-6-磷酸中有 10%以上被分流到补加途径。总之,我们报告了与体内卡尔文-本森循环补加碳通量一致的证据。我们提出,这种通量可能有助于:在源限制生长条件下维持高水平的核酮糖 1,5-二磷酸,以促进光合作用氮同化,从而建立源强度;并对抗氧化应激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d3/9305100/d6b9474f33ff/NPH-234-405-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验