Rosli Khairul Azree, Misran Azizah, Yazan Latifah Saiful, Wahab Puteri Edaroyati Megat
Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
Planta. 2025 May 10;261(6):133. doi: 10.1007/s00425-025-04710-4.
The study uncovers how Agastache rugosa coordinates carbon fixation, redox balance, and ATP homeostasis via distinct metabolic strategies optimized for different light and nutrient conditions. This study explores the metabolic adaptations of Agastache rugosa (Fisch. & C.A.Mey.) Kuntze in varying light and nutrient conditions, focusing on the coordination between photosynthetic and respiratory pathways. Plants were grown under two light levels (high light, 0% shade; low-light, 50% shade) and four nutrient treatments (NPK1, 40 mg kg; NPK2, 80 mg kg; NPK3, 120 mg kg; NPK4, 160 mg kg) and key metabolic parameters were analyzed. High-light plants had peak carbonic anhydrase activity (5.17 ± 0.26 U g FW) at NPK2, optimizing carbon fixation and redox balance with 20.6% and 12.8% higher NADP/NADPH and NAD/NADH ratios, each. Low-light plants upregulated PEPC (+110%), and PEPCK (+34%) at NPK4, displaying enhanced anaplerotic carbon fixation. Despite lower respiratory activity, (NADH-UQ, -50%; COX, -46%), plants under low-light had tenfold higher ATP at NPK3 through reduced consumption. Principal component and hierarchical cluster analyses (> 60% similarity) revealed distinct metabolic strategies between light treatments. Strong correlations among photosynthetic, respiratory, and redox parameters (r > 0.7, P < 0.001) indicated metabolic integration via shared regulatory networks. Our findings reveal the metabolic plasticity of A. rugosa, offering insights into plant adaptation with implications for cultivation. Moreover, multivariate analyses unveiled complex regulatory networks coordinating energy metabolism, highlighting the metabolic reprogramming employed by A. rugosa to maintain energetic and redox balance under dynamic environmental conditions.
该研究揭示了藿香如何通过针对不同光照和养分条件优化的独特代谢策略来协调碳固定、氧化还原平衡和ATP稳态。本研究探讨了藿香在不同光照和养分条件下的代谢适应性,重点关注光合和呼吸途径之间的协调。将植物种植在两种光照水平(高光,0%遮荫;低光,50%遮荫)和四种养分处理(NPK1,40mg/kg;NPK2,80mg/kg;NPK3,120mg/kg;NPK4,160mg/kg)下,并分析关键代谢参数。高光植物在NPK2时碳酸酐酶活性达到峰值(5.17±0.26U g FW),NADP/NADPH和NAD/NADH比率分别提高20.6%和12.8%,从而优化了碳固定和氧化还原平衡。低光植物在NPK4时上调了PEPC(+110%)和PEPCK(+34%),显示出增强的回补碳固定。尽管呼吸活性较低(NADH-UQ,-50%;COX,-46%),但低光条件下的植物在NPK3时通过减少消耗使ATP含量提高了10倍。主成分分析和层次聚类分析(>60%相似度)揭示了光照处理之间不同的代谢策略。光合、呼吸和氧化还原参数之间的强相关性(r>0.7,P<0.001)表明通过共享调控网络实现了代谢整合。我们的研究结果揭示了藿香的代谢可塑性,为植物适应性提供了见解,对栽培具有启示意义。此外,多变量分析揭示了协调能量代谢的复杂调控网络,突出了藿香在动态环境条件下维持能量和氧化还原平衡所采用的代谢重编程。