Suppr超能文献

面外法拉第离子浓差极化:在三维多孔电极上稳定聚焦带电分析物。

Out-of-plane faradaic ion concentration polarization: stable focusing of charged analytes at a three-dimensional porous electrode.

机构信息

The Department of Chemistry, Iowa State University, 2415 Osborn Drive, 1605 Gilman Hall, Ames, Iowa 50011-1021, USA.

The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, USA.

出版信息

Lab Chip. 2022 Feb 1;22(3):573-583. doi: 10.1039/d1lc01011e.

Abstract

Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by their electromigration against opposing fluid flow. Such ICP focusing has been shown to accomplish up to a million-fold enrichment of nucleic acids and proteins in single-stage preconcentrators. However, the rate at which the sample volume is swept is limited, requiring several hours to achieve these high enrichment factors. This limitation is caused by two factors. First, an ion depleted zone (IDZ) formed at a planar membrane or electrode may not extend across the full channel cross section under the flow rate employed for focusing, thereby allowing the analyte to "leak" past the IDZ. Second, within the IDZ, large fluid vortices lead to mixing, which decreases the efficiency of analyte enrichment and worsens with increased channel dimensions. Here, we address these challenges with faradaic ICP (fICP) at a three-dimensional (3D) electrode comprising metallic microbeads. This 3D-electrode distributes the IDZ, and therefore, the electric field gradient utilized for counter-flow focusing across the full height of the fluidic channel, and its large area, microstructured surface supports smaller vortices. An additional bed of insulating microbeads restricts flow patterns and supplies a large area for surface conduction of ions through the IDZ. Finally, the resistance of this secondary bed enhances focusing by locally strengthening sequestering forces. This easy-to-build platform lays a foundation for the integration of enrichment with user-defined packed bed and electrode materials.

摘要

离子浓差极化(ICP)通过局部耗尽电解质离子来实现生物分析的预浓缩,从而产生电场强度梯度,有利于带电分析物通过与其相反的流体流动的电动迁移进行电动聚焦。这种 ICP 聚焦已被证明可在单级预浓缩器中对核酸和蛋白质进行高达百万倍的浓缩。然而,样品体积被扫过的速度是有限的,需要几个小时才能达到这些高浓缩因子。这种限制是由两个因素造成的。首先,在平面膜或电极上形成的离子耗尽区(IDZ)可能不会在用于聚焦的流速下延伸穿过整个通道横截面,从而允许分析物“泄漏”过 IDZ。其次,在 IDZ 内,大的流体涡流会导致混合,从而降低分析物浓缩的效率,并且随着通道尺寸的增加而恶化。在这里,我们使用由金属微珠组成的三维(3D)电极解决了法拉第 ICP(fICP)的这些挑战。这种三维电极分布 IDZ,从而在整个流体通道的高度上分配用于逆流聚焦的电场梯度,并且其大的微结构化表面支持较小的涡流。额外的绝缘微珠床限制了流动模式,并为通过 IDZ 进行离子的表面传导提供了大的区域。最后,这个二级床的电阻通过局部增强隔离力来增强聚焦。这个易于构建的平台为与用户定义的填充床和电极材料的集成奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验