Suppr超能文献

环境因素对膜内在丝氨酸蛋白酶催化活性的影响。

Effect of Environmental Factors on the Catalytic Activity of Intramembrane Serine Protease.

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States.

出版信息

J Am Chem Soc. 2022 Jan 26;144(3):1251-1257. doi: 10.1021/jacs.1c10494. Epub 2022 Jan 13.

Abstract

The cleavage of protein inside cell membranes regulates pathological pathways and is a subject of major interest. Thus, the nature of the coupling between the physical environment and the function of such proteins has recently attracted significant experimental and theoretical efforts. However, it is difficult to determine the nature of this coupling uniquely by experimental and theoretical studies unless one can separate the chemical and the environmental factors. This work describes calculations of the activation barriers of the intramembrane rhomboid protease in neutral and charged lipid bilayers and in detergent micelle, trying to explore the environmental effect. The calculations of the chemical barrier are done using the empirical valence bond (EVB) method. Additionally, the renormalization method captures the energetics and dynamical effects of the conformational change. The simulations indicate that the physical environment around the rhomboid protease is not a major factor in changing the chemical catalysis and that the conformational and substrate dynamics do not exhibit long-time coupling. General issues about the action of membrane-embedded enzymes are also considered.

摘要

细胞膜内蛋白质的裂解调节着病理途径,是一个主要的研究课题。因此,物理环境与这类蛋白质功能之间的偶联本质最近引起了大量的实验和理论研究。然而,除非能够分离化学和环境因素,否则仅通过实验和理论研究很难确定这种偶联的本质。本工作描述了在中性和带电脂质双层以及去污剂胶束中,内膜菱形蛋白酶的激活势垒的计算,试图探索环境效应。化学势垒的计算使用经验价键(EVB)方法进行。此外,重整化方法捕捉构象变化的能量和动力学效应。模拟表明,菱形蛋白酶周围的物理环境不是改变化学催化的主要因素,构象和底物动力学没有表现出长时间的耦合。还考虑了关于膜嵌入酶作用的一般问题。

相似文献

1
Effect of Environmental Factors on the Catalytic Activity of Intramembrane Serine Protease.
J Am Chem Soc. 2022 Jan 26;144(3):1251-1257. doi: 10.1021/jacs.1c10494. Epub 2022 Jan 13.
3
Mechanisms by Which Lipids Influence Conformational Dynamics of the GlpG Intramembrane Protease.
J Phys Chem B. 2019 May 16;123(19):4159-4172. doi: 10.1021/acs.jpcb.8b11291. Epub 2019 May 6.
4
Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease.
J Membr Biol. 2020 Dec;253(6):563-576. doi: 10.1007/s00232-020-00152-z. Epub 2020 Nov 18.
5
An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency.
Structure. 2012 Jul 3;20(7):1255-63. doi: 10.1016/j.str.2012.04.022. Epub 2012 Jun 14.
6
Untangling structure-function relationships in the rhomboid family of intramembrane proteases.
Biochim Biophys Acta. 2013 Dec;1828(12):2862-72. doi: 10.1016/j.bbamem.2013.05.003.
8
Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles.
Curr Opin Struct Biol. 2013 Dec;23(6):851-8. doi: 10.1016/j.sbi.2013.07.014. Epub 2013 Aug 9.
9
How does the exosite of rhomboid protease affect substrate processing and inhibition?
Protein Sci. 2017 Dec;26(12):2355-2366. doi: 10.1002/pro.3294. Epub 2017 Oct 24.
10
Reactions at Biomembrane Interfaces.
Chem Rev. 2019 May 8;119(9):6162-6183. doi: 10.1021/acs.chemrev.8b00596. Epub 2019 Apr 25.

本文引用的文献

2
Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release.
Nat Struct Mol Biol. 2019 Oct;26(10):910-918. doi: 10.1038/s41594-019-0296-9. Epub 2019 Sep 30.
3
Molecular dynamics simulations investigate the pathway of substrate entry active site of rhomboid protease.
J Biomol Struct Dyn. 2019 Aug;37(13):3445-3455. doi: 10.1080/07391102.2018.1517609. Epub 2018 Nov 17.
4
How does the exosite of rhomboid protease affect substrate processing and inhibition?
Protein Sci. 2017 Dec;26(12):2355-2366. doi: 10.1002/pro.3294. Epub 2017 Oct 24.
5
Rhomboid protease inhibitors: Emerging tools and future therapeutics.
Semin Cell Dev Biol. 2016 Dec;60:52-62. doi: 10.1016/j.semcdb.2016.08.021. Epub 2016 Aug 24.
6
Probing catalytic rate enhancement during intramembrane proteolysis.
Biol Chem. 2016 Sep 1;397(9):907-19. doi: 10.1515/hsz-2016-0124.
8
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
9
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.
10
Refining the treatment of membrane proteins by coarse-grained models.
Proteins. 2016 Jan;84(1):92-117. doi: 10.1002/prot.24958. Epub 2015 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验