Suppr超能文献

探索共价抑制机制:模拟 SARS-CoV-2 主蛋白酶的 α-酮酰胺抑制剂的结合自由能。

Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of α-Ketoamide Inhibitors of the Main Protease of SARS-CoV-2.

机构信息

Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States.

出版信息

Biochemistry. 2020 Dec 8;59(48):4601-4608. doi: 10.1021/acs.biochem.0c00782. Epub 2020 Nov 18.

Abstract

The development of reliable ways of predicting the binding free energies of covalent inhibitors is a challenge for computer-aided drug design. Such development is important, for example, in the fight against the SARS-CoV-2 virus, in which covalent inhibitors can provide a promising tool for blocking M, the main protease of the virus. This work develops a reliable and practical protocol for evaluating the binding free energy of covalent inhibitors. Our protocol presents a major advance over other approaches that do not consider the chemical contribution of the binding free energy. Our strategy combines the empirical valence bond method for evaluating the reaction energy profile and the PDLD/S-LRA/β method for evaluating the noncovalent part of the binding process. This protocol has been used in the calculations of the binding free energy of an α-ketoamide inhibitor of M. Encouragingly, our approach reproduces the observed binding free energy. Our study of covalent inhibitors of cysteine proteases indicates that in the choice of an effective warhead it is crucial to focus on the exothermicity of the point on the free energy surface of a peptide cleavage that connects the acylation and deacylation steps. Overall, we believe that our approach should provide a powerful and effective method for design of covalent drugs.

摘要

开发可靠的预测共价抑制剂结合自由能的方法是计算机辅助药物设计面临的挑战。例如,在对抗 SARS-CoV-2 病毒的斗争中,这种开发非常重要,因为共价抑制剂可以为阻断病毒的主要蛋白酶 M 提供一种有前途的工具。这项工作开发了一种可靠且实用的方法来评估共价抑制剂的结合自由能。我们的方案在不考虑结合自由能的化学贡献的其他方法上取得了重大进展。我们的策略结合了经验价键方法来评估反应能谱和 PDLD/S-LRA/β 方法来评估结合过程中的非共价部分。该方案已用于 M 的α-酮酰胺抑制剂结合自由能的计算。令人鼓舞的是,我们的方法再现了观察到的结合自由能。我们对半胱氨酸蛋白酶共价抑制剂的研究表明,在选择有效的弹头时,关键是要关注连接酰化和脱酰化步骤的肽裂解自由能曲面上的点的放热性。总的来说,我们相信我们的方法应该为共价药物的设计提供一种强大而有效的方法。

相似文献

引用本文的文献

1
A Reflection on the Use of Molecular Simulation to Respond to SARS-CoV-2 Pandemic Threats.关于利用分子模拟应对新冠疫情威胁的思考
J Phys Chem Lett. 2025 Apr 3;16(13):3249-3263. doi: 10.1021/acs.jpclett.4c03654. Epub 2025 Mar 21.

本文引用的文献

5
Rapid repurposing of drugs for COVID-19.用于治疗新冠肺炎的药物快速重新利用。
Science. 2020 May 22;368(6493):829-830. doi: 10.1126/science.abb9332. Epub 2020 May 8.
8
Structure of M from SARS-CoV-2 and discovery of its inhibitors.SARS-CoV-2 M 结构与抑制剂的发现
Nature. 2020 Jun;582(7811):289-293. doi: 10.1038/s41586-020-2223-y. Epub 2020 Apr 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验