Suppr超能文献

使用包含 GalNAc-Ser 和 GalNAc-Thr 残基的糖引物体外合成粘蛋白型 O-聚糖。

In vitro synthesis of mucin-type O-glycans using saccharide primers comprising GalNAc-Ser and GalNAc-Thr residues.

机构信息

Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama, 223-8522, Japan.

Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi, Tokyo, 173-0003, Japan.

出版信息

Carbohydr Res. 2022 Jan;511:108495. doi: 10.1016/j.carres.2021.108495. Epub 2021 Dec 30.

Abstract

Mucin-type O-glycosylation of serine or threonine residue in proteins is known to be one of the major post-translational modifications. In this study, two novel alkyl glycosides, N-lauryl-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-l-serineamide (GalNAc-Ser-C12) and N-lauryl-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-l-threonineamide (GalNAc-Thr-C12) were synthesized as saccharide primers to prime mucin-type O-glycan biosynthesis in cells. Upon incubating human gastric cancer MKN45 cells with the saccharide primers, 22 glycosylated products were obtained, and their structures were analyzed using liquid chromatography-mass spectrometry and enzyme digestion. The amounts of glycosylated products were dependent on the amino acid residues in the saccharide primers. For example, in vitro synthesis of T antigen (Galβ1-3GalNAc), fucosyl-T (Fucα1-2Galβ1-3GalNAc), and sialyl-T (NeuAcα2-3Galβ1-3GalNAc) preferred a serine residue, whereas sialyl-Tn (NeuAcα2-6GalNAc) preferred a threonine residue. Furthermore, the glycosylated products derived from GalNAc-Ser/Thr-C12 and Gal-GalNAc-Ser/Thr-C12 using cell-free synthesis showed the same amino acid selectivity as those in the cell experiments. These results indicate that glycosyltransferases involved in the biosynthesis of mucin-type O-glycans distinguish amino acid residues conjugated to GalNAc. The saccharide primers developed in this study might be useful for comparing mucin-type oligosaccharides in cells and constructing oligosaccharide libraries to study cell function.

摘要

糖基化是蛋白质翻译后修饰的一种重要方式,其中丝氨酸和苏氨酸残基的 O-连接糖基化是最主要的糖基化修饰方式之一。本研究中,我们设计了两种新型的烷基糖苷类糖基供体 N-月桂酰基-O-(2-乙酰氨基-2-脱氧-α-D-半乳糖吡喃糖苷基)-L-丝氨酸酰胺(GalNAc-Ser-C12)和 N-月桂酰基-O-(2-乙酰氨基-2-脱氧-α-D-半乳糖吡喃糖苷基)-L-苏氨酸酰胺(GalNAc-Thr-C12),用于在细胞中启动黏蛋白型 O-聚糖的生物合成。将这两种糖基供体与人类胃癌 MKN45 细胞孵育后,通过液相色谱-质谱联用技术和酶解实验分析,共获得了 22 种糖基化产物。糖基化产物的数量取决于糖基供体中的氨基酸残基。例如,体外合成 T 抗原(Galβ1-3GalNAc)、岩藻糖基化 T 抗原(Fucα1-2Galβ1-3GalNAc)和唾液酸化 T 抗原(NeuAcα2-3Galβ1-3GalNAc)时优先选择丝氨酸残基,而唾液酸化 Tn 抗原(NeuAcα2-6GalNAc)则优先选择苏氨酸残基。此外,利用无细胞合成体系合成的 GalNAc-Ser/Thr-C12 和 Gal-GalNAc-Ser/Thr-C12 糖基化产物也表现出与细胞实验相同的氨基酸选择性。这些结果表明,参与黏蛋白型 O-聚糖生物合成的糖基转移酶能够识别与 GalNAc 连接的氨基酸残基。本研究中开发的糖基供体可能有助于比较细胞中黏蛋白型寡糖,并构建寡糖文库以研究细胞功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验