Suppr超能文献

用于自主行走机器人的生物启发式自适应神经内分泌控制的连续在线自适应

Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.

作者信息

Homchanthanakul Jettanan, Manoonpong Poramate

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):1833-1845. doi: 10.1109/TNNLS.2021.3119127. Epub 2022 May 2.

Abstract

Walking animals can continuously adapt their locomotion to deal with unpredictable changing environments. They can also take proactive steps to avoid colliding with an obstacle. In this study, we aim to realize such features for autonomous walking robots so that they can efficiently traverse complex terrains. To achieve this, we propose novel bioinspired adaptive neuroendocrine control. In contrast to conventional locomotion control methods, this approach does not require robot and environmental models, exteroceptive feedback, or multiple learning trials. It integrates three main modular neural mechanisms, relying only on proprioceptive feedback and short-term memory, namely: 1) neural central pattern generator (CPG)-based control; 2) an artificial hormone network (AHN); and 3) unsupervised input correlation-based learning (ICO). The neural CPG-based control creates insect-like gaits, while the AHN can continuously adapt robot joint movement individually with respect to the terrain during the stance phase using only the torque feedback. In parallel, the ICO generates short-term memory for proactive obstacle negotiation during the swing phase, allowing the posterior legs to step over the obstacle before hitting it. The control approach is evaluated on a bioinspired hexapod robot walking on complex unpredictable terrains (e.g., gravel, grass, and extreme random stepfield). The results show that the robot can successfully perform energy-efficient autonomous locomotion and online continuous adaptation with proactivity to overcome such terrains. Since our adaptive neural control approach does not require a robot model, it is general and can be applied to other bioinspired walking robots to achieve a similar adaptive, autonomous, and versatile function.

摘要

行走的动物能够不断调整其运动方式,以应对不可预测的变化环境。它们还能主动采取措施避免与障碍物碰撞。在本研究中,我们旨在使自主行走机器人具备这些特性,以便它们能够高效地穿越复杂地形。为实现这一目标,我们提出了一种新型的受生物启发的自适应神经内分泌控制方法。与传统的运动控制方法不同,这种方法不需要机器人和环境模型、外部感知反馈或多次学习试验。它整合了三种主要的模块化神经机制,仅依靠本体感觉反馈和短期记忆,即:1)基于神经中枢模式发生器(CPG)的控制;2)人工激素网络(AHN);3)基于无监督输入相关性的学习(ICO)。基于神经CPG的控制产生类似昆虫的步态,而AHN可以在站立阶段仅利用扭矩反馈,针对地形单独连续地调整机器人关节运动。同时,ICO在摆动阶段生成用于主动避障的短期记忆,使后腿能够在碰到障碍物之前跨过它。该控制方法在一个受生物启发的六足机器人上进行了评估,该机器人在复杂不可预测的地形(如砾石地、草地和极端随机步场)上行走。结果表明,该机器人能够成功地进行节能自主运动,并具有主动性地进行在线连续适应,以克服此类地形。由于我们的自适应神经控制方法不需要机器人模型,它具有通用性,可应用于其他受生物启发的行走机器人,以实现类似的自适应、自主和多功能功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验