Yu Shang-Jie, Jiang Yue, Roberts John A, Huber Markus A, Yao Helen, Shi Xinjian, Bechtel Hans A, Gilbert Corder Stephanie N, Heinz Tony F, Zheng Xiaolin, Fan Jonathan A
Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
ACS Nano. 2022 Feb 22;16(2):3027-3035. doi: 10.1021/acsnano.1c10489. Epub 2022 Jan 18.
van der Waals nanomaterials supporting phonon polariton quasiparticles possess extraordinary light confinement capabilities, making them ideal systems for molecular sensing, thermal emission, and subwavelength imaging applications, but they require defect-free crystallinity and nanostructured form factors to fully showcase these capabilities. We introduce bottom-up-synthesized α-MoO structures as nanoscale phonon polaritonic systems that feature tailorable morphologies and crystal qualities consistent with bulk single crystals. α-MoO nanoribbons serve as low-loss hyperbolic Fabry-Pérot nanoresonators, and we experimentally map hyperbolic resonances over four Reststrahlen bands spanning the far- and mid-infrared spectral range, including resonance modes beyond the 10th order. The measured quality factors are the highest from phonon polaritonic van der Waals structures to date. We anticipate that bottom-up-synthesized polaritonic van der Waals nanostructures will serve as an enabling high-performance and low-loss platform for infrared optical and optoelectronic applications.
支持声子极化激元准粒子的范德华纳米材料具有非凡的光限制能力,使其成为分子传感、热发射和亚波长成像应用的理想系统,但它们需要无缺陷的结晶度和纳米结构形状因子才能充分展示这些能力。我们引入自下而上合成的α-MoO结构作为纳米级声子极化激元系统,其具有与块状单晶一致的可定制形态和晶体质量。α-MoO纳米带用作低损耗双曲线法布里-珀罗纳米谐振器,我们通过实验绘制了跨越远红外和中红外光谱范围的四个Reststrahlen带的双曲线共振图,包括超过第十阶的共振模式。测量的品质因数是迄今为止声子极化激元范德华结构中最高的。我们预计,自下而上合成的极化激元范德华纳米结构将成为红外光学和光电子应用的高性能、低损耗平台。