Matveeva O G, Tresguerres-Mata A I F, Kirtaev R V, Voronin K V, Taboada-Gutiérrez J, Lanza C, Duan J, Martín-Sánchez J, Volkov V S, Alonso-González P, Nikitin A Y
Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Spain.
Department of Physics, University of Oviedo, 33006 Oviedo, Spain.
NPJ 2D Mater Appl. 2023;7(1):31. doi: 10.1038/s41699-023-00387-z. Epub 2023 Apr 10.
Optical nanoresonators are key building blocks in various nanotechnological applications (e.g., spectroscopy) due to their ability to effectively confine light at the nanoscale. Recently, nanoresonators based on phonon polaritons (PhPs)-light coupled to lattice vibrations-in polar crystals (e.g., SiC, or h-BN) have attracted much attention due to their strong field confinement, high quality factors, and their potential to enhance the photonic density of states at mid-infrared (mid-IR) frequencies, where numerous molecular vibrations reside. Here, we introduce a new class of mid-IR nanoresonators that not only exhibit the extraordinary properties previously reported, but also incorporate a new degree of freedom: twist tuning, i.e., the possibility of controlling their spectral response by simply rotating the constituent material. To achieve this result, we place a pristine slab of the van der Waals (vdW) α-MoO crystal, which supports in-plane hyperbolic PhPs, on an array of metallic ribbons. This sample design based on electromagnetic engineering, not only allows the definition of α-MoO nanoresonators with low losses (quality factors, Q, up to 200), but also enables a broad spectral tuning of the polaritonic resonances (up to 32 cm, i.e., up to ~6 times their full width at half maximum, FWHM ~5 cm) by a simple in-plane rotation of the same slab (from 0 to 45°). These results open the door to the development of tunable and low-loss IR nanotechnologies, fundamental requirements for their implementation in molecular sensing, emission or photodetection applications.
光学纳米谐振器由于能够在纳米尺度上有效限制光,因此是各种纳米技术应用(如光谱学)中的关键组件。最近,基于声子极化激元(PhP)——光与极性晶体(如碳化硅或六方氮化硼)中的晶格振动耦合——的纳米谐振器因其强场限制、高品质因数以及增强中红外(mid-IR)频率下光子态密度的潜力而备受关注,许多分子振动都发生在该频率范围内。在此,我们引入了一类新型的中红外纳米谐振器,它们不仅展现出先前报道的非凡特性,还引入了一个新的自由度:扭转调谐,即通过简单地旋转组成材料来控制其光谱响应的可能性。为实现这一结果,我们将支持面内双曲线PhP的范德华(vdW)α-MoO晶体的原始平板放置在金属带阵列上。这种基于电磁工程的样品设计,不仅能够定义具有低损耗(品质因数Q高达200)的α-MoO纳米谐振器,还能通过简单地在面内旋转同一平板(从0°到45°)实现极化激元共振的宽光谱调谐(高达32 cm,即高达其半高宽FWHM约5 cm的6倍)。这些结果为可调谐和低损耗红外纳米技术的发展打开了大门,这是它们在分子传感、发射或光电探测应用中实现的基本要求。