Department of Bioengineering and Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center and University of California, Berkeley, California 94720, United States.
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
ACS Nano. 2022 Feb 22;16(2):2013-2023. doi: 10.1021/acsnano.1c07015. Epub 2022 Jan 18.
Multifunctional nanoprobes have attracted significant attention in a wide range of disciplines such as nanomedicine, precision medicine, and cancer diagnosis and treatment. However, integrating multifunctional ability in a nanoscale structure to precisely target, image, and deliver with cellular spatial/temporal resolution is still challenging applications. This is because the development of such high-precision resolution needs to be carried out without labeling, photobleaching, and structurally segregating live cells. In this study, we present an integrated nanostructure of a mesoporous-silica nanosphere with an optical nanocrescent antenna (MONA) for multifunctional cellular targeting, drug delivery, and molecular imaging with spatiotemporal resolution. MONA comprises a systematically constructed Au nanocrescent (AuNC) antenna as a nanosensor and optical switch on a mesoporous-silica nanosphere as a cargo to molecular delivery. MONA made of antiepithelial cell adhesion molecules (anti-EpCAM)-conjugated AuNC facilitates the specific targeting of breast cancer cells, resulting in a highly focused photothermal gradient that functions as a molecular emitter. This light-driven molecular, doxorubicin (DOX) delivery function allows rapid apoptosis of breast cancer cells. Since MONA permits the tracking of quantum biological electron-transfer processes, in addition to its role as an on-demand optical switch, it enables the monitoring of the dynamic behavior of cellular cytochrome pivoting cell apoptosis in response to the DOX delivery. Owing to the integrated functions of molecular actuation and direct sensing at the precisely targeted spot afforded by MONA, we anticipate that this multifunctional optical nanoantenna structure will have an impact in the fields of nanomedicine, cancer theranostics, and basic life sciences.
多功能纳米探针在纳米医学、精准医学和癌症诊断与治疗等多个领域引起了广泛关注。然而,在纳米尺度结构中整合多功能能力以精确靶向、成像和输送具有细胞空间/时间分辨率的应用仍然具有挑战性。这是因为这种高精度分辨率的发展需要在不标记、光漂白和结构上分离活细胞的情况下进行。在本研究中,我们提出了一种介孔硅纳米球与光学纳米新月形天线(MONA)的集成纳米结构,用于多功能细胞靶向、药物输送和分子成像,具有时空分辨率。MONA 由系统构建的 Au 纳米新月形(AuNC)天线作为纳米传感器和介孔硅纳米球上的光学开关作为分子输送的货物组成。由抗上皮细胞黏附分子(anti-EpCAM)偶联的 AuNC 制成的 MONA 促进了乳腺癌细胞的特异性靶向,导致高度集中的光热梯度,作为分子发射器发挥作用。这种光驱动的分子,阿霉素(DOX)输送功能可导致乳腺癌细胞快速凋亡。由于 MONA 允许跟踪量子生物电子转移过程,除了作为按需光学开关的作用外,它还能够监测细胞细胞色素 pivoting 细胞凋亡的动态行为,以响应 DOX 输送。由于 MONA 提供了分子驱动和直接在精确靶向点感应的集成功能,我们预计这种多功能光学纳米天线结构将对纳米医学、癌症治疗和基础生命科学领域产生影响。
Nanophotonics. 2022-8-30
Biosensors (Basel). 2024-6-30
ACS Appl Nano Mater. 2024-4-8
Adv Biochem Eng Biotechnol. 2024
Sensors (Basel). 2023-3-4
MedComm (2020). 2023-1-11