IEEE Trans Med Imaging. 2022 Jul;41(7):1610-1624. doi: 10.1109/TMI.2022.3143953. Epub 2022 Jun 30.
Volume Projection Imaging from ultrasound data is a promising technique to visualize spine features and diagnose Adolescent Idiopathic Scoliosis. In this paper, we present a novel multi-task framework to reduce the scan noise in volume projection images and to segment different spine features simultaneously, which provides an appealing alternative for intelligent scoliosis assessment in clinical applications. Our proposed framework consists of two streams: i) A noise removal stream based on generative adversarial networks, which aims to achieve effective scan noise removal in a weakly-supervised manner, i.e., without paired noisy-clean samples for learning; ii) A spine segmentation stream, which aims to predict accurate bone masks. To establish the interaction between these two tasks, we propose a selective feature-sharing strategy to transfer only the beneficial features, while filtering out the useless or harmful information. We evaluate our proposed framework on both scan noise removal and spine segmentation tasks. The experimental results demonstrate that our proposed method achieves promising performance on both tasks, which provides an appealing approach to facilitating clinical diagnosis.
从超声数据进行容积投影成像是一种很有前途的技术,可以用于可视化脊柱特征和诊断青少年特发性脊柱侧凸。在本文中,我们提出了一种新的多任务框架,以减少容积投影图像中的扫描噪声,并同时分割不同的脊柱特征,为临床应用中的智能脊柱评估提供了一种有吸引力的选择。我们提出的框架由两个流组成:i)基于生成对抗网络的噪声去除流,旨在以弱监督的方式实现有效的扫描噪声去除,即无需用于学习的成对的噪声-干净样本;ii)脊柱分割流,旨在预测准确的骨骼掩模。为了建立这两个任务之间的交互,我们提出了一种选择性特征共享策略,仅传递有益的特征,同时过滤掉无用或有害的信息。我们在扫描噪声去除和脊柱分割任务上评估了我们提出的框架。实验结果表明,我们提出的方法在这两个任务上都取得了有前景的性能,为促进临床诊断提供了一种有吸引力的方法。