Suppr超能文献

基于深度学习的三维超声图像中腹主动脉瘤和腔内血栓分割

Deep learning-based segmentation of abdominal aortic aneurysms and intraluminal thrombus in 3D ultrasound images.

作者信息

Nievergeld Arjet, Çetinkaya Bünyamin, Maas Esther, van Sambeek Marc, Lopata Richard, Awasthi Navchetan

机构信息

PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP, Eindhoven, The Netherlands.

Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.

出版信息

Med Biol Eng Comput. 2024 Oct 25. doi: 10.1007/s11517-024-03216-7.

Abstract

Ultrasound (US)-based patient-specific rupture risk analysis of abdominal aortic aneurysms (AAAs) has shown promising results. Input for these models is the patient-specific geometry of the AAA. However, segmentation of the intraluminal thrombus (ILT) remains challenging in US images due to the low ILT-blood contrast. This study aims to improve AAA and ILT segmentation in time-resolved three-dimensional (3D + t) US images using a deep learning approach. In this study a "no new net" (nnU-Net) model was trained on 3D + t US data using either US-based or (co-registered) computed tomography (CT)-based annotations. The optimal training strategy for this low-contrast data was determined for a limited dataset. The merit of augmentation was investigated, as well as the inclusion of low-contrast areas. Segmentation results were validated with CT-based geometries as the ground truth. The model trained on CT-based masks showed the best performance in terms of DICE index, Hausdorff distance, and diameter differences, covering a larger part of the AAA. With a higher accuracy and less manual input the model outperforms conventional methods, with a mean Hausdorff distance of 4.4 mm for the vessel and 7.8 mm for the lumen. However, visibility of the lumen-ILT interface remains the limiting factor, necessitating improvements in image acquisition to ensure broader patient inclusion and enable rupture risk assessment of AAAs in the future.

摘要

基于超声(US)的腹主动脉瘤(AAA)患者特异性破裂风险分析已显示出有前景的结果。这些模型的输入是AAA的患者特异性几何形状。然而,由于腔内血栓(ILT)与血液的对比度低,在US图像中对ILT进行分割仍然具有挑战性。本研究旨在使用深度学习方法改善时间分辨三维(3D + t)US图像中的AAA和ILT分割。在本研究中,使用基于US或(配准的)基于计算机断层扫描(CT)的注释在3D + t US数据上训练了一个“无新网络”(nnU-Net)模型。针对有限的数据集确定了这种低对比度数据的最佳训练策略。研究了增强的优点以及低对比度区域的纳入。以基于CT的几何形状作为地面真值来验证分割结果。在基于CT的掩码上训练的模型在DICE指数、豪斯多夫距离和直径差异方面表现最佳,覆盖了AAA的更大一部分。该模型具有更高的准确性和更少的人工输入,优于传统方法,血管的平均豪斯多夫距离为4.4毫米,管腔为7.8毫米。然而,管腔-ILT界面的可见性仍然是限制因素,需要改进图像采集以确保更广泛地纳入患者,并在未来实现AAA破裂风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验