Suppr超能文献

基于查询的学习死亡率相关解码器,适用于发达岛屿经济体。

Query-based-learning mortality-related decoders for the developed island economy.

机构信息

School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China.

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.

出版信息

Sci Rep. 2022 Jan 19;12(1):956. doi: 10.1038/s41598-022-04855-2.

Abstract

Search volumes from Google Trends over clear-defined temporal and spatial scales were reported beneficial in predicting influenza or disease outbreak. Recent studies showed Wiener Model shares merits of interpretability, implementation, and adaptation to nonlinear fluctuation in terms of real-time decoding. Previous work reported Google Trends effectively predicts death-related trends for the continent economy, yet whether it applies to the island economy is unclear. To this end, a framework of the mortality-related model for a developed island economy Taiwan was built based on potential death causes from Google Trends, aiming to provide new insights into death-related online search behavior at a population level. Our results showed estimated trends based on the Wiener model significantly correlated to actual trends, outperformed those with multiple linear regression and seasonal autoregressive integrated moving average. Meanwhile, apart from that involved all possible features, two other sets of feature selecting strategies were proposed to optimize pre-trained models, either by weights or waveform periodicity of features, resulting in estimated death-related dynamics along with spectrums of risk factors. In general, high-weight features were beneficial to both "die" and "death", whereas features that possessed clear periodic patterns contributed more to "death". Of note, normalization before modeling improved decoding performances.

摘要

从谷歌趋势中检索到的清晰定义的时间和空间尺度上的搜索量被报道有助于预测流感或疾病爆发。最近的研究表明,Wiener 模型在实时解码方面具有可解释性、可实现性和对非线性波动的适应性等优点。之前的研究报告称,谷歌趋势有效地预测了非洲大陆经济的与死亡相关的趋势,但它是否适用于岛屿经济尚不清楚。为此,我们基于谷歌趋势中的潜在死亡原因,为发达岛屿经济体台湾建立了一个与死亡率相关的模型框架,旨在为人口层面的与死亡相关的在线搜索行为提供新的见解。我们的结果表明,基于 Wiener 模型估计的趋势与实际趋势显著相关,优于多元线性回归和季节性自回归综合移动平均模型。同时,除了包含所有可能的特征外,我们还提出了另外两种特征选择策略来优化预训练模型,要么通过特征的权重,要么通过特征的波形周期性,从而得到与死亡率相关的估计动态以及风险因素的频谱。总的来说,高权重特征对“死亡”和“死亡”都有好处,而具有明显周期性模式的特征对“死亡”的贡献更大。值得注意的是,建模前的归一化提高了解码性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f35c/8770507/6b1ff1e2f118/41598_2022_4855_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验