Suppr超能文献

利用搜索趋势进行季节性流感的次区域临近预报。

Subregional Nowcasts of Seasonal Influenza Using Search Trends.

作者信息

Kandula Sasikiran, Hsu Daniel, Shaman Jeffrey

机构信息

Department of Environmental Health Sciences, Columbia University, New York, NY, United States.

Department of Computer Science, Columbia University, New York, NY, United States.

出版信息

J Med Internet Res. 2017 Nov 6;19(11):e370. doi: 10.2196/jmir.7486.

Abstract

BACKGROUND

Limiting the adverse effects of seasonal influenza outbreaks at state or city level requires close monitoring of localized outbreaks and reliable forecasts of their progression. Whereas forecasting models for influenza or influenza-like illness (ILI) are becoming increasingly available, their applicability to localized outbreaks is limited by the nonavailability of real-time observations of the current outbreak state at local scales. Surveillance data collected by various health departments are widely accepted as the reference standard for estimating the state of outbreaks, and in the absence of surveillance data, nowcast proxies built using Web-based activities such as search engine queries, tweets, and access of health-related webpages can be useful. Nowcast estimates of state and municipal ILI were previously published by Google Flu Trends (GFT); however, validations of these estimates were seldom reported.

OBJECTIVE

The aim of this study was to develop and validate models to nowcast ILI at subregional geographic scales.

METHODS

We built nowcast models based on autoregressive (autoregressive integrated moving average; ARIMA) and supervised regression methods (Random forests) at the US state level using regional weighted ILI and Web-based search activity derived from Google's Extended Trends application programming interface. We validated the performance of these methods using actual surveillance data for the 50 states across six seasons. We also built state-level nowcast models using state-level estimates of ILI and compared the accuracy of these estimates with the estimates of the regional models extrapolated to the state level and with the nowcast estimates published by GFT.

RESULTS

Models built using regional ILI extrapolated to state level had a median correlation of 0.84 (interquartile range: 0.74-0.91) and a median root mean square error (RMSE) of 1.01 (IQR: 0.74-1.50), with noticeable variability across seasons and by state population size. Model forms that hypothesize the availability of timely state-level surveillance data show significantly lower errors of 0.83 (0.55-0.23). Compared with GFT, the latter model forms have lower errors but also lower correlation.

CONCLUSIONS

These results suggest that the proposed methods may be an alternative to the discontinued GFT and that further improvements in the quality of subregional nowcasts may require increased access to more finely resolved surveillance data.

摘要

背景

在州或城市层面限制季节性流感爆发的不利影响,需要密切监测局部疫情爆发情况并对其发展进行可靠预测。虽然针对流感或流感样疾病(ILI)的预测模型越来越多,但它们在局部疫情中的适用性受到当地规模实时疫情现状观测数据缺乏的限制。各卫生部门收集的监测数据被广泛视为估计疫情状况的参考标准,在缺乏监测数据的情况下,利用搜索引擎查询、推文和健康相关网页访问量等基于网络的活动构建的即时预报替代指标可能会有所帮助。谷歌流感趋势(GFT)此前曾发布过州和市级ILI的即时预报估计值;然而,这些估计值的验证报告很少。

目的

本研究的目的是开发并验证在次区域地理尺度上即时预报ILI的模型。

方法

我们在美国州层面基于自回归(自回归积分移动平均;ARIMA)和监督回归方法(随机森林),使用区域加权ILI和源自谷歌扩展趋势应用程序编程接口的基于网络的搜索活动构建即时预报模型。我们使用六个季节中50个州的实际监测数据验证了这些方法的性能。我们还使用州层面的ILI估计值构建了州层面的即时预报模型,并将这些估计值的准确性与外推到州层面的区域模型估计值以及GFT发布的即时预报估计值进行了比较。

结果

使用外推到州层面的区域ILI构建 的模型中位数相关性为0.84(四分位间距:0.74 - 0.91),中位数均方根误差(RMSE)为1.01(IQR:0.74 - 1.50),各季节和不同州人口规模之间存在明显差异。假设可获得及时的州层面监测数据的模型形式显示误差显著更低,为0.83(0.55 - 0.23)。与GFT相比,后一种模型形式误差更低,但相关性也更低。

结论

这些结果表明,所提出的方法可能是已停用的GFT的替代方法,次区域即时预报质量的进一步提高可能需要更多地获取分辨率更高的监测数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd30/5696582/bc9fd28fc2a9/jmir_v19i11e370_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验