Madi-Moussa Désiré, Belguesmia Yanath, Charlet Audrey, Drider Djamel, Coucheney Françoise
UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, F-59000 Lille, France.
Centre Hospitalier de Lille, Centre de Biologie Pathologie, Laboratoire de Bactériologie, F-59000 Lille, France.
Antibiotics (Basel). 2021 Dec 24;11(1):20. doi: 10.3390/antibiotics11010020.
Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.
抗菌耐药性是全球范围内的一个重大健康问题,如果现在不采取行动,预计其情况会加剧。为了帮助遏制这一广为人知的危机,人们宣布了不同的策略,其中包括使用抗菌肽(AMP),抗菌肽是一类以对病原菌具有杀伤活性而闻名的显著分子。细菌素是几乎所有原核生物谱系通过核糖体合成的AMP。与抗生素不同,细菌素在对真核细胞的细胞毒性、作用方式、交叉耐药性以及微生物群含量的影响方面具有一系列优势。大多数已知的细菌素由革兰氏阳性菌产生,特别是由乳酸菌(LAB)产生。LAB产生的细菌素一直被报道并因其对遗传相关革兰氏阳性菌的活性而得到表征,而对革兰氏阴性菌的活性报道较少。本研究的目的是表明副干酪乳杆菌CNCM I - 5369产生的细菌素之一——乳酸链球菌素30对革兰氏阴性临床菌株(肠炎沙门氏菌肠炎亚种H10、鼠伤寒沙门氏菌H97、阴沟肠杆菌H51、大肠杆菌H45、大肠杆菌H51、大肠杆菌H66、产酸克雷伯菌H40、肺炎克雷伯菌H71、类肺炎克雷伯菌H77、肺炎克雷伯菌H79、肺炎克雷伯菌H79)具有活性,而抗生素对这些菌株无效。此外,乳酸链球菌素30和黏菌素对上述目标革兰氏阴性临床菌株具有协同相互作用。此外,乳酸链球菌素30和黏菌素的组合促使与这些临床菌株的黏菌素耐药表型相关的mcr - 1和mcr - 9基因大幅下调。本报告表明,乳酸链球菌素30对携带多种mcr基因的革兰氏阴性临床菌株具有活性,这些抗菌药物的组合构成了一种有前景的治疗选择,有待进一步开发利用。