Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Genet. 2022 Feb;54(2):161-169. doi: 10.1038/s41588-021-00987-9. Epub 2022 Jan 20.
While large-scale, genome-wide association studies (GWAS) have identified hundreds of loci associated with brain-related traits, identification of the variants, genes and molecular mechanisms underlying these traits remains challenging. Integration of GWAS with expression quantitative trait loci (eQTLs) and identification of shared genetic architecture have been widely adopted to nominate genes and candidate causal variants. However, this approach is limited by sample size, statistical power and linkage disequilibrium. We developed the multivariate multiple QTL approach and performed a large-scale, multi-ancestry eQTL meta-analysis to increase power and fine-mapping resolution. Analysis of 3,983 RNA-sequenced samples from 2,119 donors, including 474 non-European individuals, yielded an effective sample size of 3,154. Joint statistical fine-mapping of eQTL and GWAS identified 329 variant-trait pairs for 24 brain-related traits driven by 204 unique candidate causal variants for 189 unique genes. This integrative analysis identifies candidate causal variants and elucidates potential regulatory mechanisms for genes underlying schizophrenia, bipolar disorder and Alzheimer's disease.
虽然大规模全基因组关联研究 (GWAS) 已经确定了数百个与大脑相关特征相关的基因座,但确定这些特征背后的变异、基因和分子机制仍然具有挑战性。GWAS 与表达数量性状基因座 (eQTL) 的整合以及共同遗传结构的鉴定已被广泛用于提名基因和候选因果变异。然而,这种方法受到样本量、统计能力和连锁不平衡的限制。我们开发了多变量多 QTL 方法,并进行了大规模的多血统 eQTL 元分析,以提高功率和精细映射分辨率。对来自 2119 名供体的 3983 个 RNA 测序样本(包括 474 名非欧洲个体)进行分析,产生了 3154 个有效的样本量。eQTL 和 GWAS 的联合统计精细映射确定了 24 个与大脑相关特征的 329 个变异-特征对,这些特征由 189 个独特基因的 204 个独特候选因果变异驱动。这种综合分析确定了候选因果变异,并阐明了精神分裂症、双相情感障碍和阿尔茨海默病相关基因的潜在调节机制。