Suppr超能文献

多祖系 eQTL 荟萃分析人类大脑,确定与大脑相关特征的候选因果变异。

Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits.

机构信息

Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Nat Genet. 2022 Feb;54(2):161-169. doi: 10.1038/s41588-021-00987-9. Epub 2022 Jan 20.

Abstract

While large-scale, genome-wide association studies (GWAS) have identified hundreds of loci associated with brain-related traits, identification of the variants, genes and molecular mechanisms underlying these traits remains challenging. Integration of GWAS with expression quantitative trait loci (eQTLs) and identification of shared genetic architecture have been widely adopted to nominate genes and candidate causal variants. However, this approach is limited by sample size, statistical power and linkage disequilibrium. We developed the multivariate multiple QTL approach and performed a large-scale, multi-ancestry eQTL meta-analysis to increase power and fine-mapping resolution. Analysis of 3,983 RNA-sequenced samples from 2,119 donors, including 474 non-European individuals, yielded an effective sample size of 3,154. Joint statistical fine-mapping of eQTL and GWAS identified 329 variant-trait pairs for 24 brain-related traits driven by 204 unique candidate causal variants for 189 unique genes. This integrative analysis identifies candidate causal variants and elucidates potential regulatory mechanisms for genes underlying schizophrenia, bipolar disorder and Alzheimer's disease.

摘要

虽然大规模全基因组关联研究 (GWAS) 已经确定了数百个与大脑相关特征相关的基因座,但确定这些特征背后的变异、基因和分子机制仍然具有挑战性。GWAS 与表达数量性状基因座 (eQTL) 的整合以及共同遗传结构的鉴定已被广泛用于提名基因和候选因果变异。然而,这种方法受到样本量、统计能力和连锁不平衡的限制。我们开发了多变量多 QTL 方法,并进行了大规模的多血统 eQTL 元分析,以提高功率和精细映射分辨率。对来自 2119 名供体的 3983 个 RNA 测序样本(包括 474 名非欧洲个体)进行分析,产生了 3154 个有效的样本量。eQTL 和 GWAS 的联合统计精细映射确定了 24 个与大脑相关特征的 329 个变异-特征对,这些特征由 189 个独特基因的 204 个独特候选因果变异驱动。这种综合分析确定了候选因果变异,并阐明了精神分裂症、双相情感障碍和阿尔茨海默病相关基因的潜在调节机制。

相似文献

1
Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits.
Nat Genet. 2022 Feb;54(2):161-169. doi: 10.1038/s41588-021-00987-9. Epub 2022 Jan 20.
4
A meta-analysis of gene expression quantitative trait loci in brain.
Transl Psychiatry. 2014 Oct 7;4(10):e459. doi: 10.1038/tp.2014.96.
5
Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci.
Hum Mol Genet. 2015 Feb 15;24(4):1200-10. doi: 10.1093/hmg/ddu525. Epub 2014 Oct 14.
6
Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206069119. doi: 10.1073/pnas.2206069119. Epub 2022 Aug 15.
9
Cross-population joint analysis of eQTLs: fine mapping and functional annotation.
PLoS Genet. 2015 Apr 23;11(4):e1005176. doi: 10.1371/journal.pgen.1005176. eCollection 2015 Apr.
10
Leveraging allelic imbalance to refine fine-mapping for eQTL studies.
PLoS Genet. 2019 Dec 13;15(12):e1008481. doi: 10.1371/journal.pgen.1008481. eCollection 2019 Dec.

引用本文的文献

1
The emerging roles of long non-coding RNAs in the nervous system.
Nat Rev Neurosci. 2025 Sep 5. doi: 10.1038/s41583-025-00960-z.
5
Uncovering methylation-dependent genetic effects on regulatory element function in diverse genomes.
Genome Res. 2025 Aug 1;35(8):1781-1793. doi: 10.1101/gr.279957.124.
7
Integrative genomics sheds light on the immunogenetics of tuberculosis in cattle.
Commun Biol. 2025 Mar 24;8(1):479. doi: 10.1038/s42003-025-07846-x.
8
SingleBrain: A Meta-Analysis of Single-Nucleus eQTLs Linking Genetic Risk to Brain Disorders.
medRxiv. 2025 Mar 7:2025.03.06.25323424. doi: 10.1101/2025.03.06.25323424.
9
Long-read RNA sequencing atlas of human microglia isoforms elucidates disease-associated genetic regulation of splicing.
Nat Genet. 2025 Mar;57(3):604-615. doi: 10.1038/s41588-025-02099-0. Epub 2025 Mar 3.
10

本文引用的文献

1
A map of transcriptional heterogeneity and regulatory variation in human microglia.
Nat Genet. 2021 Jun;53(6):861-868. doi: 10.1038/s41588-021-00875-2. Epub 2021 Jun 3.
2
Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases.
Cell. 2021 May 27;184(11):3006-3021.e17. doi: 10.1016/j.cell.2021.03.056. Epub 2021 May 1.
3
A human cell atlas of fetal gene expression.
Science. 2020 Nov 13;370(6518). doi: 10.1126/science.aba7721.
5
Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis.
Nat Commun. 2020 Oct 30;11(1):5504. doi: 10.1038/s41467-020-19365-w.
6
The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science. 2020 Sep 11;369(6509):1318-1330. doi: 10.1126/science.aaz1776.
7
Cell type-specific genetic regulation of gene expression across human tissues.
Science. 2020 Sep 11;369(6509). doi: 10.1126/science.aaz8528.
8
Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk.
Nat Neurosci. 2020 Apr;23(4):510-519. doi: 10.1038/s41593-020-0604-z. Epub 2020 Mar 16.
9
The single-cell eQTLGen consortium.
Elife. 2020 Mar 9;9:e52155. doi: 10.7554/eLife.52155.
10
Negative evidence for a role of APH1B T27I variant in Alzheimer's disease.
Hum Mol Genet. 2020 Apr 15;29(6):955-966. doi: 10.1093/hmg/ddaa017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验