Wen Xiaoquan, Luca Francesca, Pique-Regi Roger
Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
PLoS Genet. 2015 Apr 23;11(4):e1005176. doi: 10.1371/journal.pgen.1005176. eCollection 2015 Apr.
Mapping expression quantitative trait loci (eQTLs) has been shown as a powerful tool to uncover the genetic underpinnings of many complex traits at molecular level. In this paper, we present an integrative analysis approach that leverages eQTL data collected from multiple population groups. In particular, our approach effectively identifies multiple independent cis-eQTL signals that are consistent across populations, accounting for population heterogeneity in allele frequencies and linkage disequilibrium patterns. Furthermore, by integrating genomic annotations, our analysis framework enables high-resolution functional analysis of eQTLs. We applied our statistical approach to analyze the GEUVADIS data consisting of samples from five population groups. From this analysis, we concluded that i) jointly analysis across population groups greatly improves the power of eQTL discovery and the resolution of fine mapping of causal eQTL ii) many genes harbor multiple independent eQTLs in their cis regions iii) genetic variants that disrupt transcription factor binding are significantly enriched in eQTLs (p-value = 4.93 × 10(-22)).
绘制表达数量性状基因座(eQTL)已被证明是在分子水平上揭示许多复杂性状遗传基础的有力工具。在本文中,我们提出了一种综合分析方法,该方法利用从多个群体收集的eQTL数据。特别是,我们的方法有效地识别了多个在不同群体中一致的独立顺式eQTL信号,同时考虑了等位基因频率和连锁不平衡模式中的群体异质性。此外,通过整合基因组注释,我们的分析框架能够对eQTL进行高分辨率功能分析。我们应用我们的统计方法分析了由五个群体样本组成的GEUVADIS数据。通过该分析,我们得出以下结论:i)跨群体联合分析极大地提高了eQTL发现的能力和因果eQTL精细定位的分辨率;ii)许多基因在其顺式区域含有多个独立的eQTL;iii)破坏转录因子结合的遗传变异在eQTL中显著富集(p值 = 4.93 × 10(-22))。