Sigley Sarah, Beyersdorff Olaf
School of Computing, University of Leeds, Leeds, UK.
Institute of Computer Science, Friedrich Schiller University Jena, Jena, Germany.
J Autom Reason. 2022;66(1):1-41. doi: 10.1007/s10817-021-09609-9. Epub 2021 Oct 13.
We investigate the proof complexity of modal resolution systems developed by Nalon and Dixon (J Algorithms 62(3-4):117-134, 2007) and Nalon et al. (in: Automated reasoning with analytic Tableaux and related methods-24th international conference, (TABLEAUX'15), pp 185-200, 2015), which form the basis of modal theorem proving (Nalon et al., in: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI'17), pp 4919-4923, 2017). We complement these calculi by a new tighter variant and show that proofs can be efficiently translated between all these variants, meaning that the calculi are equivalent from a proof complexity perspective. We then develop the first lower bound technique for modal resolution using Prover-Delayer games, which can be used to establish "genuine" modal lower bounds for size of dag-like modal resolution proofs. We illustrate the technique by devising a new modal pigeonhole principle, which we demonstrate to require exponential-size proofs in modal resolution. Finally, we compare modal resolution to the modal Frege systems of Hrubeš (Ann Pure Appl Log 157(2-3):194-205, 2009) and obtain a "genuinely" modal separation.
我们研究了由纳隆和迪克森(《算法杂志》62(3 - 4):117 - 134,2007年)以及纳隆等人(收录于:《基于分析表和相关方法的自动推理——第24届国际会议》(TABLEAUX'15),第185 - 200页,2015年)所开发的模态归结系统的证明复杂性,这些系统构成了模态定理证明的基础(纳隆等人,收录于:《第二十六届国际人工智能联合会议论文集》(IJCAI'17),第4919 - 4923页,2017年)。我们通过一种新的更严格的变体对这些演算进行补充,并表明证明可以在所有这些变体之间高效转换,这意味着从证明复杂性的角度来看,这些演算是等价的。然后,我们使用证明者 - 延迟者博弈开发了第一种模态归结的下界技术,该技术可用于为有向无环图形式的模态归结证明的规模建立“真正的”模态下界。我们通过设计一个新的模态鸽巢原理来说明该技术,我们证明该原理在模态归结中需要指数规模的证明。最后,我们将模态归结与赫鲁贝什的模态弗雷格系统(《纯粹与应用逻辑年鉴》157(2 - 3):194 - 205,2009年)进行比较,并获得了一种“真正的”模态分离。