Suppr超能文献

模态归结的证明复杂性。

Proof Complexity of Modal Resolution.

作者信息

Sigley Sarah, Beyersdorff Olaf

机构信息

School of Computing, University of Leeds, Leeds, UK.

Institute of Computer Science, Friedrich Schiller University Jena, Jena, Germany.

出版信息

J Autom Reason. 2022;66(1):1-41. doi: 10.1007/s10817-021-09609-9. Epub 2021 Oct 13.

Abstract

We investigate the proof complexity of modal resolution systems developed by Nalon and Dixon (J Algorithms 62(3-4):117-134, 2007) and Nalon et al. (in: Automated reasoning with analytic Tableaux and related methods-24th international conference, (TABLEAUX'15), pp 185-200, 2015), which form the basis of modal theorem proving (Nalon et al., in: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI'17), pp 4919-4923, 2017). We complement these calculi by a new tighter variant and show that proofs can be efficiently translated between all these variants, meaning that the calculi are equivalent from a proof complexity perspective. We then develop the first lower bound technique for modal resolution using Prover-Delayer games, which can be used to establish "genuine" modal lower bounds for size of dag-like modal resolution proofs. We illustrate the technique by devising a new modal pigeonhole principle, which we demonstrate to require exponential-size proofs in modal resolution. Finally, we compare modal resolution to the modal Frege systems of Hrubeš (Ann Pure Appl Log 157(2-3):194-205, 2009) and obtain a "genuinely" modal separation.

摘要

我们研究了由纳隆和迪克森(《算法杂志》62(3 - 4):117 - 134,2007年)以及纳隆等人(收录于:《基于分析表和相关方法的自动推理——第24届国际会议》(TABLEAUX'15),第185 - 200页,2015年)所开发的模态归结系统的证明复杂性,这些系统构成了模态定理证明的基础(纳隆等人,收录于:《第二十六届国际人工智能联合会议论文集》(IJCAI'17),第4919 - 4923页,2017年)。我们通过一种新的更严格的变体对这些演算进行补充,并表明证明可以在所有这些变体之间高效转换,这意味着从证明复杂性的角度来看,这些演算是等价的。然后,我们使用证明者 - 延迟者博弈开发了第一种模态归结的下界技术,该技术可用于为有向无环图形式的模态归结证明的规模建立“真正的”模态下界。我们通过设计一个新的模态鸽巢原理来说明该技术,我们证明该原理在模态归结中需要指数规模的证明。最后,我们将模态归结与赫鲁贝什的模态弗雷格系统(《纯粹与应用逻辑年鉴》157(2 - 3):194 - 205,2009年)进行比较,并获得了一种“真正的”模态分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa01/8752563/27b9444d45aa/10817_2021_9609_Fig1_HTML.jpg

相似文献

1
Proof Complexity of Modal Resolution.模态归结的证明复杂性。
J Autom Reason. 2022;66(1):1-41. doi: 10.1007/s10817-021-09609-9. Epub 2021 Oct 13.
2
A precondition prover for analogy.一种用于类比的前提条件证明器。
Biosystems. 1995;34(1-3):225-47. doi: 10.1016/0303-2647(94)01453-e.
3
The Higher-Order Prover Leo-II.高阶定理证明器Leo-II
J Autom Reason. 2015;55(4):389-404. doi: 10.1007/s10817-015-9348-y. Epub 2015 Sep 22.
4
The Cantor-Bernstein theorem: how many proofs?坎托-伯恩斯坦定理:有多少种证明?
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180031. doi: 10.1098/rsta.2018.0031.
5
New Tools and Connections for Exponential-Time Approximation.指数时间近似的新工具与联系
Algorithmica. 2019;81(10):3993-4009. doi: 10.1007/s00453-018-0512-8. Epub 2018 Sep 5.
6
A Comprehensive Framework for Saturation Theorem Proving.饱和度定理证明的综合框架。
J Autom Reason. 2022;66(4):499-539. doi: 10.1007/s10817-022-09621-7. Epub 2022 Jun 7.
8
Strong Extension-Free Proof Systems.强无扩展证明系统。
J Autom Reason. 2020;64(3):533-554. doi: 10.1007/s10817-019-09516-0. Epub 2019 Feb 22.
9
Proof simplification and automated theorem proving.证明简化与自动定理证明。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180034. doi: 10.1098/rsta.2018.0034.
10
Building Strategies into QBF Proofs.
J Autom Reason. 2021;65(1):125-154. doi: 10.1007/s10817-020-09560-1. Epub 2020 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验