Bledsoe W W
Department of Computer Science, University of Texas at Austin 78712, USA.
Biosystems. 1995;34(1-3):225-47. doi: 10.1016/0303-2647(94)01453-e.
We describe here a prover PC (precondition) that normally acts as an ordinary theorem prover, but which returns a 'precondition' when it is unable to prove the given formula. If F is the formula attempted to be proved and PC returns the precondition Q, then (Q-->F) is a theorem (that PC can prove). This prover, PC, uses a proof-plan. In its simplest mode, when there is no proof-plan, it acts like ordinary abduction. We show here how this method can be used to derive certain proofs by analogy. To do this, it uses a proof-plan from a given guiding proof to help construct the proof of a similar theorem, by 'debugging' (automatically) that proof-plan. We show here the analogy proofs of a few simple example theorems and one hard pair, Ex4 and Ex4L. The given proof-plan for Ex4 is used by the system to prove automatically Ex4; and that same proof-plan is then used to prove Ex4L, during which the proof-plan is 'debugged' (automatically). These two examples are similar to two other, more difficult, theorems from the theory of resolution, namely GCR (the ground completeness of resolution) and GCLR (the ground completeness of lock resolution). GCR and GCLR have also been handled, in essence, by this system but not completed in all their details.
我们在此描述一个前置条件证明器(PC),它通常作为一个普通的定理证明器,但在无法证明给定公式时会返回一个“前置条件”。如果F是试图证明的公式,且PC返回前置条件Q,那么(Q→F)是一个定理(PC能够证明)。这个证明器PC使用一个证明计划。在其最简单的模式下,当没有证明计划时,它的行为类似于普通的溯因推理。我们在此展示如何通过类比使用这种方法来推导某些证明。为此,它通过(自动)“调试”给定引导证明中的证明计划,利用该证明计划来帮助构建类似定理的证明。我们在此展示了几个简单示例定理以及一对较难的定理Ex4和Ex4L的类比证明。系统使用给定的Ex4证明计划自动证明Ex4;然后使用相同的证明计划来证明Ex4L,在此过程中(自动)“调试”该证明计划。这两个示例类似于归结理论中的另外两个更难的定理,即GCR(归结的基础完备性)和GCLR(锁归结的基础完备性)。本质上,这个系统也处理了GCR和GCLR,但并未完成其所有细节。