Goswami Ankush, Pantangi Venkata Raghu Tej
Research Institute for Symbolic Computation (RISC), JKU, Linz, Austria.
Department of Mathematics, Southern University of Science and Technology (SUSTECH), Shenzhen, China.
Ramanujan J. 2022;57(1):369-387. doi: 10.1007/s11139-020-00352-0. Epub 2021 Feb 18.
Recently, Li (Int J Number Theory, 2020) obtained an asymptotic formula for a certain partial sum involving coefficients for the polynomial in the First Borwein conjecture. As a consequence, he showed the positivity of this sum. His result was based on a sieving principle discovered by himself and Wan (Sci China Math, 2010). In fact, Li points out in his paper that his method can be generalized to prove an asymptotic formula for a general partial sum involving coefficients for any prime . In this work, we extend Li's method to obtain asymptotic formula for several partial sums of coefficients of a very general polynomial. We find that in the special cases , the signs of these sums are consistent with the three famous Borwein conjectures. Similar sums have been studied earlier by Zaharescu (Ramanujan J, 2006) using a completely different method. We also improve on the error terms in the asymptotic formula for Li and Zaharescu. Using a recent result of Borwein (JNT 1993), we also obtain an asymptotic estimate for the maximum of the absolute value of these coefficients for primes and for , we obtain a lower bound on the maximum absolute value of these coefficients for sufficiently large .
最近,李(《国际数论杂志》,2020年)得到了一个关于第一博温猜想中多项式系数的特定部分和的渐近公式。结果,他证明了这个和的 positivity。他的结果基于他自己和万(《中国科学:数学》,2010年)发现的一个筛法原理。事实上,李在他的论文中指出,他的方法可以推广到证明对于任何质数 的涉及系数的一般部分和的渐近公式。在这项工作中,我们扩展了李的方法,以得到一个非常一般的多项式系数的几个部分和的渐近公式。我们发现,在特殊情况 下,这些和的符号与三个著名的博温猜想一致。扎哈雷斯库(《拉马努金杂志》,2006年) earlier使用一种完全不同的方法研究了类似的和。我们还改进了李和扎哈雷斯库渐近公式中的误差项。利用博温(《数论杂志》1993年)的一个 recent结果,我们还得到了质数 时这些系数绝对值最大值的渐近估计,并且对于 ,我们得到了足够大时这些系数绝对值最大值的一个下界。