Suppr超能文献

使用生成的伪迹对病理模型进行压力测试。

Stress Testing Pathology Models with Generated Artifacts.

作者信息

Wang Nicholas Chandler, Kaplan Jeremy, Lee Joonsang, Hodgin Jeffrey, Udager Aaron, Rao Arvind

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.

出版信息

J Pathol Inform. 2021 Dec 24;12:54. doi: 10.4103/jpi.jpi_6_21. eCollection 2021.

Abstract

BACKGROUND

Machine learning models provide significant opportunities for improvement in health care, but their "black-box" nature poses many risks.

METHODS

We built a custom Python module as part of a framework for generating artifacts that are meant to be tunable and describable to allow for future testing needs. We conducted an analysis of a previously published digital pathology classification model and an internally developed kidney tissue segmentation model, utilizing a variety of generated artifacts including testing their effects. The artifacts simulated were bubbles, tissue folds, uneven illumination, marker lines, uneven sectioning, altered staining, and tissue tears.

RESULTS

We found that there is some performance degradation on the tiles with artifacts, particularly with altered stains but also with marker lines, tissue folds, and uneven sectioning. We also found that the response of deep learning models to artifacts could be nonlinear.

CONCLUSIONS

Generated artifacts can provide a useful tool for testing and building trust in machine learning models by understanding where these models might fail.

摘要

背景

机器学习模型为改善医疗保健提供了重大机遇,但其“黑箱”性质带来了许多风险。

方法

我们构建了一个自定义Python模块,作为生成旨在可调整和可描述的工件的框架的一部分,以满足未来的测试需求。我们对先前发表的数字病理学分类模型和内部开发的肾组织分割模型进行了分析,利用了各种生成的工件,包括测试它们的效果。模拟的工件有气泡、组织褶皱、光照不均匀、标记线、切片不均匀、染色改变和组织撕裂。

结果

我们发现,带有工件的切片存在一定程度的性能下降,特别是染色改变的情况,但标记线、组织褶皱和切片不均匀也会导致性能下降。我们还发现深度学习模型对工件的响应可能是非线性的。

结论

通过了解机器学习模型可能在哪些方面失败,生成的工件可为测试和建立对这些模型的信任提供有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8631/8721870/7c7c7182e7de/JPI-12-54-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验