Suppr超能文献

通过显式伪像增强提高全切片图像的质量控制

Improving quality control of whole slide images by explicit artifact augmentation.

作者信息

Jurgas Artur, Wodzinski Marek, D'Amato Marina, van der Laak Jeroen, Atzori Manfredo, Müller Henning

机构信息

AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, 30059, Krakow, Poland.

University of Applied Sciences Western Switzerland (HES-SO), Institute of Informatics, 3960, Sierre, Switzerland.

出版信息

Sci Rep. 2024 Aug 1;14(1):17847. doi: 10.1038/s41598-024-68667-2.

Abstract

The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The manual annotation of ground-truth for artifact detection methods is expensive and time-consuming. This work addresses the issue by proposing a method dedicated to augmenting whole slide images with artifacts. The tool seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The augmented datasets are then utilized to train artifact classification methods. The evaluation shows their usefulness in classification of the artifacts, where they show an improvement from 0.10 to 0.01 AUROC depending on the artifact type. The framework, model, weights, and ground-truth annotations are freely released to facilitate open science and reproducible research.

摘要

在临床工作流程和以研究为导向的环境中普遍存在的全切片图像采集伪影问题,需要人工干预和重新扫描。克服这一挑战需要开发质量控制算法,但这受到组织病理学中相关标注数据有限的阻碍。人工标注用于伪影检测方法的真实情况既昂贵又耗时。这项工作通过提出一种专门用于用伪影增强全切片图像的方法来解决这个问题。该工具无缝地从外部库生成伪影并将其融合到给定的组织病理学数据集中。然后利用增强后的数据集训练伪影分类方法。评估显示了它们在伪影分类中的有用性,根据伪影类型,它们的曲线下面积(AUROC)从0.10提高到了0.01。该框架、模型、权重和真实标注已免费发布,以促进开放科学和可重复研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验