Suppr超能文献

一种用于识别代谢物联产代谢工程策略的计算框架。

A Computational Framework to Identify Metabolic Engineering Strategies for the Co-Production of Metabolites.

作者信息

Raajaraam Lavanya, Raman Karthik

机构信息

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.

Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India.

出版信息

Front Bioeng Biotechnol. 2022 Jan 7;9:779405. doi: 10.3389/fbioe.2021.779405. eCollection 2021.

Abstract

Microbial production of chemicals is a more sustainable alternative to traditional chemical processes. However, the shift to bioprocess is usually accompanied by a drop in economic feasibility. Co-production of more than one chemical can improve the economy of bioprocesses, enhance carbon utilization and also ensure better exploitation of resources. While a number of tools exist for metabolic engineering, there is a dearth of computational tools that can co-optimize the production of multiple metabolites. In this work, we propose co-FSEOF (co-production using Flux Scanning based on Enforced Objective Flux), an algorithm designed to identify intervention strategies to co-optimize the production of a set of metabolites. Co-FSEOF can be used to identify all pairs of products that can be co-optimized with ease using a single intervention. Beyond this, it can also identify higher-order intervention strategies for a given set of metabolites. We have employed this tool on the genome-scale metabolic models of and , and identified intervention targets that can co-optimize the production of pairs of metabolites under both aerobic and anaerobic conditions. Anaerobic conditions were found to support the co-production of a higher number of metabolites when compared to aerobic conditions in both organisms. The proposed computational framework will enhance the ease of study of metabolite co-production and thereby aid the design of better bioprocesses.

摘要

微生物生产化学品是传统化学工艺更具可持续性的替代方案。然而,向生物工艺的转变通常伴随着经济可行性的下降。多种化学品的联产可以提高生物工艺的经济性,增强碳利用效率,还能确保更好地利用资源。虽然存在许多用于代谢工程的工具,但缺乏能够共同优化多种代谢物生产的计算工具。在这项工作中,我们提出了co-FSEOF(基于强制目标通量的通量扫描联产)算法,该算法旨在识别干预策略以共同优化一组代谢物的生产。co-FSEOF可用于识别所有可以通过单一干预轻松共同优化的产物对。除此之外,它还可以为给定的一组代谢物识别高阶干预策略。我们已将此工具应用于[具体物种1]和[具体物种2]的基因组规模代谢模型,并确定了在有氧和厌氧条件下均可共同优化代谢物对生产的干预靶点。结果发现,与这两种生物的有氧条件相比,厌氧条件支持更多代谢物的联产。所提出的计算框架将提高代谢物联产研究的便利性,从而有助于设计更好的生物工艺。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace1/8777033/b2404bf9c127/fbioe-09-779405-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验