Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, United States.
J Am Chem Soc. 2022 Feb 2;144(4):1647-1662. doi: 10.1021/jacs.1c10390. Epub 2022 Jan 24.
Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O to produce a tetrazine that immediately reacts with a cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding of 10 M s. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.
本文描述了通过光催化激活生物正交化学反应,在活细胞中时空控制生物分子的标记和图案化,称为“CABL”。在这里,一种非反应性的二氢四嗪(DHTz)在细胞内环境中被环境中的 O 2 光催化氧化生成四嗪,四嗪立即与环辛烯(TCO)二烯发生反应。开发了 6-(2-吡啶基)二氢四嗪-3-甲酰胺作为稳定的、可穿透细胞膜的 DHTz 试剂,其氧化产物是迄今为止在活细胞中使用的反应性最强的四嗪,具有 Diels-Alder 动力学,超过 10 M s。CABL 光催化剂基于荧光素或硅罗丹明染料,在 470 或 660nm 处激活。描述了限制细胞外单线态氧生成的策略,这提高了光催化的细胞相容性。HaloTag 自标记平台用于将 DHTz 标签引入定位于细胞核、线粒体、肌动蛋白或细胞质的蛋白质中,并证明了具有高产量的亚细胞激活和用 TCO-荧光团标记。CABL 依赖于光剂量,双光子激发可促进亚细胞器水平的 CABL,在无需洗涤的条件下选择性地对活细胞进行图案化。CABL 还应用于通过使用 TIRF 显微镜选择性地激活用 DHTz 标记的小分子共价抑制剂标记的内源性蛋白质靶标,对活细胞进行空间分辨标记,以选择性地激活细胞内单酰基甘油脂肪酶。除了时空控制的标记外,CABL 还通过恢复细胞内部分还原为 DHTz 的常用 3-芳基-6-甲基四嗪报告物的反应性,提高了“普通”四嗪连接的效率。CABL 的时空控制以及光激活和标记的快速速率应能在活系统中实现一系列生物分子标记应用。