Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
Phys Chem Chem Phys. 2022 Feb 2;24(5):3386-3399. doi: 10.1039/d1cp02706a.
Chalcogen⋯chalcogen interactions were investigated within four types of like⋯like and unlike YCY⋯YCY complexes (where Y = O, S, or Se). A plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), surface electrostatic potential extrema, point-of-charge (PoC), quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI), and symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) calculations, were executed. The energetic findings revealed a preferential tendency of the studied chalcogen-bearing molecules to engage in type I, II, III, or IV chalcogen⋯chalcogen interactions. Notably, the selenium-bearing molecules exhibited the most potent ability to favorably participate in all the explored chalcogen⋯chalcogen interactions. Among like⋯like complexes, type IV interactions showed the most favorable negative binding energies, whereas type III interactions exhibited the weakest binding energies. Unexpectedly, oxygen-containing complexes within type IV interactions showed an alien pattern of binding energies that decreased along with an increase in the chalcogen atomic size level. QTAIM analysis provided a solo BCP, chalcogen⋯chalcogen interactions, with no clues as to any secondary ones. SAPT-EDA outlined the domination of the explored interactions by the dispersion forces and indicated the pivotal shares of the electrostatic forces, except type III σ-hole⋯σ-hole and di-σ-hole interactions. These observations demonstrate in better detail all the types of chalcogen⋯chalcogen interactions, providing persuasive reasons for their more intensive use in versatile fields related to materials science and drug design.
在四种类似的 YCY⋯YCY 配合物(其中 Y = O、S 或 Se)中研究了硫属元素⋯硫属元素相互作用。进行了大量的量子力学计算,包括分子静电势(MEP)、表面静电势极值、电荷点(PoC)、分子中原子的量子理论(QTAIM)、非共价相互作用(NCI)和基于对称自适应微扰理论的能量分解分析(SAPT-EDA)计算。能量学研究结果表明,所研究的含硫属元素的分子优先倾向于形成 I 型、II 型、III 型或 IV 型硫属元素⋯硫属元素相互作用。值得注意的是,含硒分子表现出最有利的能力,可以有利地参与所有探索的硫属元素⋯硫属元素相互作用。在类似的配合物中,IV 型相互作用显示出最有利的负结合能,而 III 型相互作用显示出最弱的结合能。出乎意料的是,含氧配合物在 IV 型相互作用中表现出与结合能随硫属原子尺寸水平增加而降低的陌生模式。QTAIM 分析提供了一个单独的 BCP,硫属元素⋯硫属元素相互作用,没有任何关于二次相互作用的线索。SAPT-EDA 概述了所探索的相互作用主要由色散力支配,并指出了除 III 型 σ-孔⋯σ-孔和双-σ-孔相互作用外,静电相互作用的关键份额。这些观察结果更详细地说明了所有类型的硫属元素⋯硫属元素相互作用,并为它们在与材料科学和药物设计相关的各种领域中的更广泛应用提供了有说服力的理由。