Suppr超能文献

利用萝卜(L.)下胚轴外植体的高效介导遗传转化方法。

Efficient -mediated genetic transformation method using hypocotyl explants of radish ( L.).

作者信息

Muto Naoki, Komatsu Kenji, Matsumoto Takashi

机构信息

Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Department of Bioresource Development, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan.

出版信息

Plant Biotechnol (Tokyo). 2021 Dec 25;38(4):457-461. doi: 10.5511/plantbiotechnology.21.1021b.

Abstract

To investigate the gene function of radish ( L.), several attempts have been made to generate genetically transformed radish. However, no efficient and relatively simple method for the genetic transformation of radish has been developed to date. In this study, we established an -mediated genetic transformation method using the hypocotyl-derived explants of radish cultivar "Pirabikku". Primarily based on the transformation procedure, we optimized it for radish transformation. Using this system, the transformation efficiency of radish hypocotyl explants by strain GV3101 harboring pIG121-Hm was 13.3%. The copy number of transfer DNA integrated into the genome was either one or two in the four independent transgenic plants. Two of the four plants exhibited male sterility and did not produce self-pollinated seeds. Examination of the expression of the β-glucuronidase () gene in T plants from fertile T plants showed that the genes were inherited. The improvement in the genetic transformation in this study might pave the way for accelerated molecular breeding and genetic analysis of radish.

摘要

为了研究萝卜(L.)的基因功能,人们已经进行了多次尝试来培育转基因萝卜。然而,迄今为止尚未开发出一种高效且相对简单的萝卜遗传转化方法。在本研究中,我们利用萝卜品种“Pirabikku”的下胚轴衍生外植体建立了一种农杆菌介导的遗传转化方法。主要基于农杆菌转化程序,我们对其进行了优化以用于萝卜转化。使用该系统,携带pIG121-Hm的农杆菌菌株GV3101对萝卜下胚轴外植体的转化效率为13.3%。在四个独立的转基因植株中,整合到基因组中的转移DNA拷贝数为一或两个。这四株植物中有两株表现出雄性不育,不能产生自花授粉种子。对可育T植株的T代植株中β-葡萄糖醛酸酶()基因表达的检测表明,该基因能够遗传。本研究中遗传转化的改进可能为加速萝卜的分子育种和遗传分析铺平道路。

相似文献

1
Efficient -mediated genetic transformation method using hypocotyl explants of radish ( L.).
Plant Biotechnol (Tokyo). 2021 Dec 25;38(4):457-461. doi: 10.5511/plantbiotechnology.21.1021b.
3
CRISPR/Cas9-mediated genome editing of and in radish ( L.).
Front Plant Sci. 2022 Oct 13;13:951660. doi: 10.3389/fpls.2022.951660. eCollection 2022.
5
Agrobacterium-mediated genetic transformation of Perilla frutescens.
Plant Cell Rep. 2004 Nov;23(6):386-90. doi: 10.1007/s00299-004-0825-8. Epub 2004 Sep 11.
8
regeneration and -mediated transformation of male- sterile marigold ( L.).
Plant Biotechnol (Tokyo). 2017;34(2):125-129. doi: 10.5511/plantbiotechnology.17.0530a. Epub 2017 Jun 28.
9
L-Cysteine Increases the Transformation Efficiency of Chinese Cabbage ( ssp. ).
Front Plant Sci. 2021 Oct 26;12:767140. doi: 10.3389/fpls.2021.767140. eCollection 2021.
10
A novel in vitro transformation of L. using rapid direct shoot regeneration.
3 Biotech. 2017 Oct;7(5):284. doi: 10.1007/s13205-017-0915-2. Epub 2017 Aug 16.

引用本文的文献

1
Overexpression of transcription factor simultaneously enhances quercetin-dependent metabolites in radish callus.
Heliyon. 2024 Feb 24;10(8):e27053. doi: 10.1016/j.heliyon.2024.e27053. eCollection 2024 Apr 30.
2
Establishment and application of Agrobacterium-delivered CRISPR/Cas9 system for wild tobacco () genome editing.
Front Plant Sci. 2024 Mar 4;15:1329697. doi: 10.3389/fpls.2024.1329697. eCollection 2024.
3
Establishment of an efficient transformation method of garden stock () using a callus formation chemical inducer.
Plant Biotechnol (Tokyo). 2022 Sep 25;39(3):273-280. doi: 10.5511/plantbiotechnology.22.0602a.
4
CRISPR/Cas9-mediated genome editing of and in radish ( L.).
Front Plant Sci. 2022 Oct 13;13:951660. doi: 10.3389/fpls.2022.951660. eCollection 2022.
5
Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of Involved in Salt Stress.
Front Plant Sci. 2022 Jul 13;13:860742. doi: 10.3389/fpls.2022.860742. eCollection 2022.
6
From the Editors.
Plant Biotechnol (Tokyo). 2022 Mar 25;39(1):i-iii. doi: 10.5511/plantbiotechnology.22.editorial.

本文引用的文献

2
Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.
Theor Appl Genet. 2016 Jul;129(7):1357-1372. doi: 10.1007/s00122-016-2708-0. Epub 2016 Apr 2.
4
Draft sequences of the radish (Raphanus sativus L.) genome.
DNA Res. 2014 Oct;21(5):481-90. doi: 10.1093/dnares/dsu014. Epub 2014 May 16.
5
Straight walk: a modified method of ligation-mediated genome walking for plant species with large genomes.
Anal Biochem. 2009 May 1;388(1):158-60. doi: 10.1016/j.ab.2009.02.002. Epub 2009 Feb 7.
7
Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea.
Theor Appl Genet. 2004 May;108(7):1249-55. doi: 10.1007/s00122-003-1539-y. Epub 2003 Dec 9.
8
Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea.
Theor Appl Genet. 2004 Feb;108(4):644-50. doi: 10.1007/s00122-003-1473-z. Epub 2003 Oct 8.
10
GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.
EMBO J. 1987 Dec 20;6(13):3901-7. doi: 10.1002/j.1460-2075.1987.tb02730.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验