Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
ACS Infect Dis. 2022 Feb 11;8(2):280-295. doi: 10.1021/acsinfecdis.1c00402. Epub 2022 Jan 28.
During infection, bacteria use an arsenal of resistance mechanisms to negate antibiotic therapies. In addition, pathogenic bacteria form surface-attached biofilms bearing enriched populations of metabolically dormant persister cells. Bacteria develop resistance in response to antibiotic insults; however, nonreplicating biofilms are innately tolerant to all classes of antibiotics. As such, molecules that can eradicate antibiotic-resistant and antibiotic-tolerant bacteria are of importance. Here, we report modular synthetic routes to fluorine-containing halogenated phenazine (HP) and halogenated acridine (HA) agents with potent antibacterial and biofilm-killing activities. Nine fluorinated phenazines were rapidly accessed through a synthetic strategy involving (1) oxidation of fluorinated anilines to azobenzene intermediates, (2) SAr with 2-methoxyaniline, and (3) cyclization to phenazines upon treatment with trifluoroacetic acid. Five structurally related acridine heterocycles were synthesized using SAr and Buchwald-Hartwig approaches. From this focused collection, phenazines , , , and acridine demonstrated potent antibacterial activities against Gram-positive pathogens (MIC = 0.04-0.78 μM). Additionally, and eradicated , and biofilms with excellent potency (, MBEC = 4.69-6.25 μM; , MBEC = 4.69-50 μM). Using real-time quantitative polymerase chain reaction (RT-qPCR), , , , and rapidly induce the transcription of iron uptake biomarkers and in methicillin-resistant (MRSA) biofilms, and we conclude that these agents operate through iron starvation. Overall, fluorinated phenazine and acridine agents could lead to ground-breaking advances in the treatment of challenging bacterial infections.
在感染过程中,细菌利用一系列抵抗机制来抵消抗生素治疗。此外,致病菌形成表面附着的生物膜,其中富含代谢休眠的持久细胞。细菌对抗生素的刺激产生耐药性;然而,不复制的生物膜对所有类别的抗生素都具有固有耐受性。因此,能够根除抗药性和抗生素耐受性细菌的分子非常重要。在这里,我们报告了含氟卤化吩嗪(HP)和卤化吖啶(HA)抗菌剂的模块化合成途径,这些抗菌剂具有很强的抗菌和杀生物膜活性。通过涉及(1)氟化苯胺氧化为偶氮苯中间体、(2)SAr 与 2-甲氧基苯胺反应、(3)用三氟乙酸环化得到吩嗪的合成策略,快速获得了 9 个氟化吩嗪。使用 SAr 和 Buchwald-Hartwig 方法合成了 5 种结构相关的吖啶杂环。在这个集中的化合物库中,吩嗪 、 、 、和吖啶 对革兰氏阳性病原体表现出很强的抗菌活性(MIC = 0.04-0.78 μM)。此外, 、 和 能有效根除 、 生物膜,其效力非常高( ,MBEC = 4.69-6.25 μM; ,MBEC = 4.69-50 μM)。通过实时定量聚合酶链反应(RT-qPCR), 、 、 、和 迅速诱导耐甲氧西林金黄色葡萄球菌(MRSA)生物膜中铁摄取生物标志物 和 的转录,我们得出结论,这些药物通过铁饥饿发挥作用。总的来说,含氟吩嗪和吖啶类药物可能会在治疗具有挑战性的细菌感染方面取得突破性进展。