Harvard Medical School, Artificial Intelligence Operations and Data Science, Dana-Farber Cancer Institute, 25 Shattuck Street, Boston, MA 02115, United States.
Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02115, United States.
J Clin Neurosci. 2022 Mar;97:121-126. doi: 10.1016/j.jocn.2022.01.015. Epub 2022 Jan 28.
We sought to develop natural language processing (NLP) methods for automated detection and characterization of neuromonitoring documentation from free-text operative reports in patients undergoing spine surgery. We included 13,718 patients who received spine surgery at two tertiary academic medical centers between December 2000 - December 2020. We first validated a rule-based NLP method for identifying operative reports containing neuromonitoring documentation, comparing performance to standard administrative codes. We then trained a deep learning model in a subset of 993 patients to characterize neuromonitoring documentation and identify events indicating change in status or difficulty establishing baseline signals. Performance of the deep learning model was compared to gold-standard manual chart review. In our patient population, 3,606 (26.3%) patients had neuromonitoring documentation identified using NLP. Our NLP method identified notes containing neuromonitoring documentation with an F1-score of 1.0, surpassing performance of standard administrative codes which had an F1-score of 0.64. In the subset of 993 patients used for training, validation, and testing a deep learning model, the prevalence of change in status was 6.5% and difficulty establishing neuromonitoring baseline signals was 6.6%. The deep learning model had an F1-score = 0.80 and AUC-ROC = 1.0 for identifying change in status, and an F1-score = 0.80 and AUC-ROC = 0.97 for identifying difficulty establishing baseline signals. Compared to gold standard manual chart review, our methodology has greater efficiency for identifying infrequent yet important types of neuromonitoring documentation. This method may facilitate large-scale quality improvement initiatives that require timely analysis of a large volume of EHRs.
我们旨在开发自然语言处理(NLP)方法,以便从脊柱手术患者的手术报告中自动检测和描述神经监测文档。我们纳入了 2000 年 12 月至 2020 年 12 月期间在两个三级学术医疗中心接受脊柱手术的 13718 名患者。我们首先验证了一种基于规则的 NLP 方法,用于识别包含神经监测文档的手术报告,并将其性能与标准管理代码进行比较。然后,我们在 993 名患者的子集中训练了一个深度学习模型,以描述神经监测文档并识别指示状态变化或难以建立基线信号的事件。深度学习模型的性能与金标准手动图表审查进行了比较。在我们的患者人群中,有 3606 名(26.3%)患者的神经监测文档通过 NLP 识别。我们的 NLP 方法识别包含神经监测文档的记录的 F1 得分为 1.0,超过了标准管理代码的性能(F1 得分为 0.64)。在用于训练、验证和测试深度学习模型的 993 名患者的子集中,状态变化的患病率为 6.5%,建立神经监测基线信号的困难为 6.6%。深度学习模型在识别状态变化方面的 F1 得分为 0.80,AUC-ROC 为 1.0,在识别建立基线信号的困难方面的 F1 得分为 0.80,AUC-ROC 为 0.97。与金标准手动图表审查相比,我们的方法在识别罕见但重要类型的神经监测文档方面具有更高的效率。这种方法可以促进需要及时分析大量电子健康记录的大规模质量改进计划。