Suppr超能文献

自然语言处理能否对腰椎间盘切除术后需要再次手术的伤口感染进行准确的自动报告?

Can natural language processing provide accurate, automated reporting of wound infection requiring reoperation after lumbar discectomy?

作者信息

Karhade Aditya V, Bongers Michiel E R, Groot Olivier Q, Cha Thomas D, Doorly Terence P, Fogel Harold A, Hershman Stuart H, Tobert Daniel G, Schoenfeld Andrew J, Kang James D, Harris Mitchel B, Bono Christopher M, Schwab Joseph H

机构信息

Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedic Surgery, Newton Wellesley Hospital, Newton, MA, USA.

出版信息

Spine J. 2020 Oct;20(10):1602-1609. doi: 10.1016/j.spinee.2020.02.021. Epub 2020 Mar 4.

Abstract

BACKGROUND

Surgical site infections are a major driver of morbidity and increased costs in the postoperative period after spine surgery. Current tools for surveillance of these adverse events rely on prospective clinical tracking, manual retrospective chart review, or administrative procedural and diagnosis codes.

PURPOSE

The purpose of this study was to develop natural language processing (NLP) algorithms for automated reporting of postoperative wound infection requiring reoperation after lumbar discectomy.

PATIENT SAMPLE

Adult patients undergoing discectomy at two academic and three community medical centers between January 1, 2000 and July 31, 2019 for lumbar disc herniation.

OUTCOME MEASURES

Reoperation for wound infection within 90 days after surgery METHODS: Free-text notes of patients who underwent surgery from January 1, 2000 to December 31, 2015 were used for algorithm training. Free-text notes of patients who underwent surgery after January 1, 2016 were used for algorithm testing. Manual chart review was used to label which patients had reoperation for wound infection. An extreme gradient-boosting NLP algorithm was developed to detect reoperation for postoperative wound infection.

RESULTS

Overall, 5,860 patients were included in this study and 62 (1.1%) had a reoperation for wound infection. In patients who underwent surgery after January 1, 2016 (n=1,377), the NLP algorithm detected 15 of the 16 patients (sensitivity=0.94) who had reoperation for infection. In comparison, current procedural terminology and international classification of disease codes detected 12 of these 16 patients (sensitivity=0.75). At a threshold of 0.05, the NLP algorithm had positive predictive value of 0.83 and F1-score of 0.88.

CONCLUSION

Temporal validation of the algorithm developed in this study demonstrates a proof-of-concept application of NLP for automated reporting of adverse events after spine surgery. Adapting this methodology for other procedures and outcomes in spine and orthopedics has the potential to dramatically improve and automatize quality and safety reporting.

摘要

背景

手术部位感染是脊柱手术后发病和术后成本增加的主要驱动因素。目前用于监测这些不良事件的工具依赖于前瞻性临床跟踪、人工回顾性病历审查或行政程序及诊断代码。

目的

本研究的目的是开发自然语言处理(NLP)算法,用于自动报告腰椎间盘切除术后需要再次手术的术后伤口感染情况。

患者样本

2000年1月1日至2019年7月31日期间在两个学术医疗中心和三个社区医疗中心因腰椎间盘突出症接受椎间盘切除术的成年患者。

观察指标

术后90天内因伤口感染进行再次手术

方法

使用2000年1月1日至2015年12月31日接受手术患者的自由文本记录进行算法训练。使用2016年1月1日后接受手术患者的自由文本记录进行算法测试。通过人工病历审查来标记哪些患者因伤口感染进行了再次手术。开发了一种极端梯度提升NLP算法来检测术后伤口感染的再次手术情况。

结果

本研究共纳入5860例患者,其中62例(1.1%)因伤口感染进行了再次手术。在2016年1月1日后接受手术的患者(n = 1377)中,NLP算法检测出16例因感染进行再次手术的患者中的15例(敏感性 = 0.94)。相比之下,当前的程序术语和国际疾病分类代码检测出这16例患者中的12例(敏感性 = 0.75)。在阈值为0.05时,NLP算法的阳性预测值为0.83,F1分数为0.88。

结论

本研究中开发的算法的时间验证证明了NLP在脊柱手术后不良事件自动报告中的概念验证应用。将这种方法应用于脊柱和骨科的其他手术及结果,有可能显著改善并自动化质量和安全报告。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验