Suppr超能文献

开发机器学习和自然语言处理算法,用于在前路腰椎手术中进行术前预测和术中血管损伤的自动识别。

Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.

机构信息

Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedic Surgery, Newton Wellesley Hospital, Newton, MA, USA.

出版信息

Spine J. 2021 Oct;21(10):1635-1642. doi: 10.1016/j.spinee.2020.04.001. Epub 2020 Apr 12.

Abstract

BACKGROUND

Intraoperative vascular injury (VI) may be an unavoidable complication of anterior lumbar spine surgery; however, vascular injury has implications for quality and safety reporting as this intraoperative complication may result in serious bleeding, thrombosis, and postoperative stricture.

PURPOSE

The purpose of this study was to (1) develop machine learning algorithms for preoperative prediction of VI and (2) develop natural language processing (NLP) algorithms for automated surveillance of intraoperative VI from free-text operative notes.

PATIENT SAMPLE

Adult patients, 18 years or age or older, undergoing anterior lumbar spine surgery at two academic and three community medical centers were included in this analysis.

OUTCOME MEASURES

The primary outcome was unintended VI during anterior lumbar spine surgery.

METHODS

Manual review of free-text operative notes was used to identify patients who had unintended VI. The available population was split into training and testing cohorts. Five machine learning algorithms were developed for preoperative prediction of VI. An NLP algorithm was trained for automated detection of intraoperative VI from free-text operative notes. Performance of the NLP algorithm was compared to current procedural terminology and international classification of diseases codes.

RESULTS

In all, 1035 patients underwent anterior lumbar spine surgery and the rate of intraoperative VI was 7.2% (n=75). Variables used for preoperative prediction of VI were age, male sex, body mass index, diabetes, L4-L5 exposure, and surgery for infection (discitis, osteomyelitis). The best performing machine learning algorithm achieved c-statistic of 0.73 for preoperative prediction of VI (https://sorg-apps.shinyapps.io/lumbar_vascular_injury/). For automated detection of intraoperative VI from free-text notes, the NLP algorithm achieved c-statistic of 0.92. The NLP algorithm identified 18 of the 21 patients (sensitivity 0.86) who had a VI whereas current procedural terminologyand international classification of diseases codes identified 6 of the 21 (sensitivity 0.29) patients. At this threshold, the NLP algorithm had a specificity of 0.93, negative predictive value of 0.99, positive predictive value of 0.51, and F1-score of 0.64.

CONCLUSION

Relying on administrative procedural and diagnosis codes may underestimate the rate of unintended intraoperative VI in anterior lumbar spine surgery. External and prospective validation of the algorithms presented here may improve quality and safety reporting.

摘要

背景

术中血管损伤(VI)可能是前路腰椎手术不可避免的并发症;然而,血管损伤对质量和安全报告有影响,因为这种术中并发症可能导致严重出血、血栓形成和术后狭窄。

目的

本研究的目的是(1)开发用于术前预测 VI 的机器学习算法,(2)开发用于从自由文本手术记录中自动监测术中 VI 的自然语言处理(NLP)算法。

患者样本

纳入在两家学术医疗机构和三家社区医疗机构行前路腰椎手术的 18 岁或以上成年患者。

主要结局

前路腰椎手术中发生意外 VI。

方法

对自由文本手术记录进行人工审查,以识别发生意外 VI 的患者。将可利用的人群分为训练和测试队列。开发了 5 种机器学习算法用于术前预测 VI。为从自由文本手术记录中自动检测术中 VI 训练了 NLP 算法。比较了 NLP 算法与当前操作术语和国际疾病分类代码的性能。

结果

共有 1035 例患者接受前路腰椎手术,术中 VI 发生率为 7.2%(n=75)。用于预测 VI 的术前变量为年龄、男性、体重指数、糖尿病、L4-L5 暴露和感染手术(椎间盘炎、骨髓炎)。术前预测 VI 表现最佳的机器学习算法的 C 统计量为 0.73(https://sorg-apps.shinyapps.io/lumbar_vascular_injury/)。对于从自由文本记录中自动检测术中 VI,NLP 算法的 C 统计量为 0.92。NLP 算法识别出 21 例患者中的 18 例(敏感度 0.86)发生 VI,而当前操作术语和国际疾病分类代码仅识别出 21 例患者中的 6 例(敏感度 0.29)。在这个阈值下,NLP 算法的特异性为 0.93,阴性预测值为 0.99,阳性预测值为 0.51,F1 评分为 0.64。

结论

仅依靠行政操作和诊断代码可能会低估前路腰椎手术中意外术中 VI 的发生率。对这里提出的算法进行外部和前瞻性验证可能会提高质量和安全性报告。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验