Henriques Carla Oliveira, Neves Maria Elisabete, Castelão Licínio, Nguyen Duc Khuong
Polytechnic of Coimbra, Coimbra Business Research Centre|ISCAC, Quinta Agrícola - Bencanta, 3045-601 Coimbra, Portugal.
INESC Coimbra - DEEC, University of Coimbra, Polo 2, 3030-290 Coimbra, Portugal.
Ann Oper Res. 2022;313(1):341-366. doi: 10.1007/s10479-021-04323-6. Epub 2022 Jan 23.
This paper proposes a two-step approach to build portfolio models. The first step employs the Data Envelopment Analysis (DEA) to select assets attaining efficient financial performance according to a set of indicators used as inputs and outputs. The second step builds interval multiobjective portfolio models to obtain the optimal composition of efficient portfolios previously identified with respect to investor preferences. The usefulness of this proposed methodology is illustrated through a selected sample of diversified Exchange Traded Funds (ETFs) operating in the US energy sector. Our results with respect to all models and time horizons mainly show that: (i) ETFs related to nuclear energy are more often viewed as efficient according to all DEA models considered; (ii) the efficient portfolios do not contain any ETFs related to the renewable energy sector; and (iii) natural gas and oil are the sectors that have the most ETFs represented in efficient portfolios.
The online version contains supplementary material available at 10.1007/s10479-021-04323-6.
本文提出了一种构建投资组合模型的两步法。第一步采用数据包络分析(DEA),根据一组用作输入和输出的指标来选择实现高效财务绩效的资产。第二步构建区间多目标投资组合模型,以获得先前根据投资者偏好确定的有效投资组合的最优构成。通过在美国能源领域运营的多元化交易型开放式指数基金(ETF)的选定样本,说明了所提出方法的实用性。我们关于所有模型和时间范围的结果主要表明:(i)根据所考虑的所有DEA模型,与核能相关的ETF更常被视为有效;(ii)有效投资组合不包含任何与可再生能源领域相关的ETF;(iii)天然气和石油是在有效投资组合中代表ETF最多的行业。
在线版本包含可在10.1007/s10479-021-04323-6获取的补充材料。