Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Finland.
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
PLoS Comput Biol. 2022 Jan 31;18(1):e1009824. doi: 10.1371/journal.pcbi.1009824. eCollection 2022 Jan.
Closely spaced promoters in tandem formation are abundant in bacteria. We investigated the evolutionary conservation, biological functions, and the RNA and single-cell protein expression of genes regulated by tandem promoters in E. coli. We also studied the sequence (distance between transcription start sites 'dTSS', pause sequences, and distances from oriC) and potential influence of the input transcription factors of these promoters. From this, we propose an analytical model of gene expression based on measured expression dynamics, where RNAP-promoter occupancy times and dTSS are the key regulators of transcription interference due to TSS occlusion by RNAP at one of the promoters (when dTSS ≤ 35 bp) and RNAP occupancy of the downstream promoter (when dTSS > 35 bp). Occlusion and downstream promoter occupancy are modeled as linear functions of occupancy time, while the influence of dTSS is implemented by a continuous step function, fit to in vivo data on mean single-cell protein numbers of 30 natural genes controlled by tandem promoters. The best-fitting step is at 35 bp, matching the length of DNA occupied by RNAP in the open complex formation. This model accurately predicts the squared coefficient of variation and skewness of the natural single-cell protein numbers as a function of dTSS. Additional predictions suggest that promoters in tandem formation can cover a wide range of transcription dynamics within realistic intervals of parameter values. By accurately capturing the dynamics of these promoters, this model can be helpful to predict the dynamics of new promoters and contribute to the expansion of the repertoire of expression dynamics available to synthetic genetic constructs.
串联形成的紧密间隔启动子在细菌中很丰富。我们研究了串联启动子调控的基因在大肠杆菌中的进化保守性、生物学功能以及 RNA 和单细胞蛋白表达。我们还研究了这些启动子的序列(转录起始位点之间的距离 'dTSS'、暂停序列以及与 oriC 的距离)和潜在输入转录因子的影响。由此,我们提出了一个基于测量表达动力学的基因表达分析模型,其中 RNAP-启动子占据时间和 dTSS 是由于 RNAP 在一个启动子(当 dTSS ≤ 35 bp)处的 TSS 闭塞和 RNAP 占据下游启动子(当 dTSS > 35 bp)引起转录干扰的关键调节剂。闭塞和下游启动子占据被建模为占据时间的线性函数,而 dTSS 的影响则通过连续阶跃函数来实现,该函数拟合了 30 个自然基因的单细胞蛋白数量的体内数据,这些基因受串联启动子的控制。最佳拟合阶跃位于 35 bp,与开放复合物形成中 RNAP 占据的 DNA 长度相匹配。该模型可以准确预测自然单细胞蛋白数量的平方变异系数和偏度作为 dTSS 的函数。其他预测表明,串联形成的启动子可以在现实参数值间隔内覆盖广泛的转录动力学范围。通过准确捕捉这些启动子的动态,该模型可以帮助预测新启动子的动态,并有助于扩展可用的表达动力学组合。