Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Nucleic Acids Res. 2022 Jul 8;50(12):6801-6819. doi: 10.1093/nar/gkac540.
The robustness and sensitivity of gene networks to environmental changes is critical for cell survival. How gene networks produce specific, chronologically ordered responses to genome-wide perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term transcriptional responses to changes in RNAP concentration can be explained by the absolute difference between the gene's numbers of activating and repressing input transcription factors (TFs). Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene. Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that the global topological traits of the TFN of E. coli shape which gene cohorts respond to genome-wide stresses.
基因网络对环境变化的稳健性和敏感性对于细胞存活至关重要。基因网络如何在稳健地维持内稳态的同时,针对全基因组的扰动产生特定的、按时间顺序排列的反应,仍然是一个悬而未决的问题。我们分析了短时间和中期内,对 RNA 聚合酶 (RNAP) 浓度变化的全基因组反应是否受到大肠杆菌转录因子网络 (TFN) 的已知拓扑结构和逻辑的影响。我们发现,在基因群水平上,单个基因中期转录对 RNAP 浓度变化的响应幅度可以通过基因激活和抑制输入转录因子 (TF) 的数量之间的绝对差异来解释。有趣的是,这种差异与基因的输入 TF 数量呈强烈的正相关。同时,短期反应仅受到 TFN 的微弱影响。我们的结果表明,大肠杆菌 TFN 的全局拓扑特征决定了哪些基因群会对全基因组应激做出反应。