Suppr超能文献

在缺乏RF1的大肠杆菌宿主菌株中通过重新定义单个UAG密码子来表达重组硒蛋白。

Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain.

作者信息

Cheng Qing, Arnér Elias S J

机构信息

Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.

出版信息

Methods Enzymol. 2022;662:95-118. doi: 10.1016/bs.mie.2021.10.004. Epub 2021 Nov 15.

Abstract

Selenoproteins containing the rare amino acid selenocysteine (Sec), typically being enzymes utilizing the selenium atom of Sec for promoted catalysis of redox reactions, are challenging to obtain at high amounts in pure form. The technical challenges limiting selenoprotein supply derive from intricacies in their translation, necessitating the recoding of a UGA stop codon to a sense codon for Sec. This, in turn, involves the interactions of a Sec-dedicated elongation factor, either directly or indirectly, with a structure in the selenoprotein-encoding mRNA called a SECIS element (Selenocysteine Insertion Sequence), a dedicated tRNA species for Sec with an anticodon for the UGA, and several accessory enzymes and proteins involved in the selenoprotein synthesis. Here, we describe an alternative method for recombinant selenoprotein production using UAG as the Sec codon in a specific strain of E. coli lacking other UAG codons and lacking the release factor RF1 that normally terminates translation at UAG. We also describe how such recombinant selenoproteins can be purified and further analyzed for final Sec contents. The methodology can be used for production of natural selenoproteins in recombinant form as well as for production of synthetic selenoproteins that may be designed to use the unique biophysical properties of Sec for diverse biotechnological applications.

摘要

含稀有氨基酸硒代半胱氨酸(Sec)的硒蛋白通常是利用Sec的硒原子促进氧化还原反应催化的酶,要大量获得其纯品具有挑战性。限制硒蛋白供应的技术难题源于其翻译过程的复杂性,这需要将UGA终止密码子重新编码为Sec的有义密码子。反过来,这又涉及一种Sec专用延伸因子直接或间接与硒蛋白编码mRNA中一种称为硒代半胱氨酸插入序列(SECIS元件)的结构、一种带有UGA反密码子的Sec专用tRNA种类以及几种参与硒蛋白合成的辅助酶和蛋白质之间的相互作用。在此,我们描述了一种在特定大肠杆菌菌株中使用UAG作为Sec密码子来生产重组硒蛋白的替代方法,该菌株缺乏其他UAG密码子且缺乏通常在UAG处终止翻译的释放因子RF1。我们还描述了如何纯化此类重组硒蛋白并进一步分析其最终的Sec含量。该方法可用于以重组形式生产天然硒蛋白,也可用于生产可能被设计为利用Sec独特生物物理特性用于各种生物技术应用的合成硒蛋白。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验