Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA.
J Biol Chem. 2022 Mar;298(3):101651. doi: 10.1016/j.jbc.2022.101651. Epub 2022 Jan 29.
Siderophores are iron-chelating molecules that solubilize Fe for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
铁载体是一种螯合铁的分子,可以溶解铁以利于微生物利用,并通过释放宿主铁以供细菌摄取来促进真核生物的定植或感染。通过荧光标记膜受体和结合蛋白,我们创建了 20 个传感器,用于检测、区分和定量脱铁和高铁铁载体。传感器蛋白来源于大肠杆菌(Fiu、FepA、Cir、FhuA、IutA、BtuB)、肺炎克雷伯菌(IroN、FepA、FyuA)、鲍曼不动杆菌(PiuA、FepA、PirA、BauA)、铜绿假单胞菌(FepA、FpvA)和新月柄杆菌(HutA)的依赖于 TonB 的配体门控孔蛋白(LGPs)、大肠杆菌周质结合蛋白(FepB)和人血清结合蛋白(siderocalin)。它们检测到高铁儿茶酚(肠杆菌素、降解肠杆菌素、葡萄糖基肠杆菌素、二羟基苯甲酸、二羟基苯丙氨酸丝氨酸、头孢地嗪、MB-1)、高铁羟肟酸盐(铁血红素、aerobactin)、混合铁络合物(耶尔森菌素、不动菌素、pyoverdine)和卟啉(血红素、维生素 B12)。这些传感器定义了 LGPs 和结合蛋白的特异性和相应亲和力,并监测了微生物病原体的铁载体和卟啉转运。我们还首次定量了一些 LGPs 对多种铁络合物的广泛识别,以及其他 LGPs 对单一金属螯合物的特异性。除了它们的主要铁载体配体外,大多数 LGPs 与相应的脱铁载体结合的亲和力约低 100 倍。这些传感器为游离生活、共生和致病性革兰氏阴性细菌的铁载体生物合成和摄取途径提供了深入了解。