Hausherr D, Niederdorfer R, Bürgmann H, Lehmann M F, Magyar P, Mohn J, Morgenroth E, Joss A
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department, 8600 Dübendorf, Switzerland.
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Water Department, 6047 Kastanienbaum, Switzerland.
Sci Total Environ. 2022 May 20;822:153546. doi: 10.1016/j.scitotenv.2022.153546. Epub 2022 Jan 29.
The development of new wastewater treatment processes can assist in reducing the impact of wastewater treatment on the environment. The recently developed partial nitritation anammox (PNA) process, for example, consumes less energy for aeration and reduces nitrate in the effluent without requiring additional organic carbon. However, achieving stable nitritation (ammonium oxidation; NH → NO) at mainstream conditions (T = 10-25 °C, C:N > 10, influent ammonium < 50 mgNH-N/L and effluent < 1 mgNH-N/L) remains challenging. This study explores the potential and mechanism of nitrite-oxidizing bacteria (NOB) suppression in a bottom-fed sequencing batch reactor (SBR). Two bench-scale (11 L) reactors and a pilot-scale reactor (8 m) were operated for over a year and were fed with organic substrate depleted municipal wastewater. Initially, nitratation (nitrite oxidation; NO → NO) occurred occasionally until an anaerobic phase was integrated into the operating cycle. The introduction of the anaerobic phase effectively suppressed the regrowth of NOB while nitritation was stable over 300 days, down to 8 °C and at ammonium influent concentrations < 25 mgNH-N/L. Batch experiments and process data revealed that parameters typically affecting NOB growth (e.g., dissolved oxygen, alkalinity, trace elements, lag-phase after anoxia, free nitrous acid (FNA), free ammonia (FA), pH, sulfide, or solids retention time (SRT)) could not fully explain the suppression of nitratation. Experiments in which fresh nitrifying microbial biomass was added to the nitritation system indicated that NOB inactivation explained NOB suppression better than NOB washout at high SRT. This study concludes that bottom-fed SBRs with anaerobic phases allow for stable nitritation over a broad range of operational parameters. Coupling this type of SBR to an anammox reactor can enable efficient mainstream anammox-based wastewater treatment.
新型废水处理工艺的开发有助于减少废水处理对环境的影响。例如,最近开发的部分亚硝化厌氧氨氧化(PNA)工艺,曝气能耗较低,且无需额外有机碳即可减少出水硝酸盐含量。然而,在主流条件下(温度为10-25℃,碳氮比>10,进水铵氮<50mgNH₄-N/L且出水<1mgNH₄-N/L)实现稳定的亚硝化(铵氧化;NH₄→NO₂)仍然具有挑战性。本研究探讨了底部进料序批式反应器(SBR)中抑制亚硝酸盐氧化菌(NOB)的潜力和机制。两个实验室规模(11L)的反应器和一个中试规模反应器(8m³)运行了一年多,采用有机底物耗尽的城市污水作为进水。最初,偶尔会发生硝酸盐化(亚硝酸盐氧化;NO₂→NO₃),直到在运行周期中加入厌氧阶段。厌氧阶段的引入有效抑制了NOB的再生,同时亚硝化在300天内保持稳定,温度低至8℃且进水铵氮浓度<25mgNH₄-N/L。批次实验和工艺数据表明,通常影响NOB生长的参数(如溶解氧、碱度、微量元素、缺氧后的滞后期、游离亚硝酸(FNA)、游离氨(FA)、pH值、硫化物或固体停留时间(SRT))无法完全解释硝酸盐化的抑制现象。向亚硝化系统中添加新鲜硝化微生物生物质的实验表明,在高SRT下,NOB失活比NOB洗出更能解释NOB的抑制现象。本研究得出结论,带有厌氧阶段的底部进料SBR能够在广泛的运行参数范围内实现稳定的亚硝化。将这种类型的SBR与厌氧氨氧化反应器耦合,可以实现基于厌氧氨氧化的高效主流废水处理。