Osaka University, 1-2 Yamadaoka, Suita, Osaka , 565-0871, Japan.
Psychometrika. 2022 Sep;87(3):967-991. doi: 10.1007/s11336-021-09824-8. Epub 2022 Feb 1.
Factor analysis (FA) procedures can be classified into three types (Adachi in WIREs Comput Stat https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1458 , 2019): latent variable FA (LVFA), matrix decomposition FA (MDFA), and its variant (Stegeman in Comput Stat Data Anal 99: 189-203, 2016) named completely decomposed FA (CDFA) through the theorems proved in this paper. We revisit those procedures from the Comprehensive FA (CompFA) model, in which a multivariate observation is decomposed into common factor, specific factor, and error parts. These three parts are separated in MDFA and CDFA, while the specific factor and error parts are not separated, but their sum, called a unique factor, is considered in LVFA. We show that the assumptions in the CompFA model are satisfied by the CDFA solution, but not completely by the MDFA one. Then, how the CompFA model parameters are estimated in the FA procedures is examined. The study shows that all parameters can be recovered well in CDFA, while the sum of the parameters for the specific factor and error parts is approximated by the LVFA estimate of the unique factor parameter and by the MDFA estimate of the specific factor parameter. More detailed results are given through our subdivision of the CompFA model according to whether the error part is uncorrelated among variables or not.
因子分析(FA)程序可分为三种类型(Adachi 在 WIREs Comput Stat https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1458 ,2019):潜在变量 FA(LVFA)、矩阵分解 FA(MDFA)及其变体(Stegeman 在 Comput Stat Data Anal 99:189-203,2016),通过本文证明的定理命名为完全分解 FA(CDFA)。我们从综合 FA(CompFA)模型重新审视这些程序,其中多元观测值分解为共同因子、特殊因子和误差部分。在 MDFA 和 CDFA 中,这三个部分是分开的,而在 LVFA 中,特殊因子和误差部分没有分开,而是它们的总和,称为独特因子,被考虑在内。我们表明,CDFA 解决方案满足 CompFA 模型的假设,但不完全满足 MDFA 解决方案的假设。然后,检查了 CompFA 模型参数在 FA 程序中的估计方法。研究表明,在 CDFA 中可以很好地恢复所有参数,而特殊因子和误差部分的参数之和则通过 LVFA 对独特因子参数的估计和通过 MDFA 对特殊因子参数的估计进行近似。通过我们根据变量之间的误差部分是否相关对 CompFA 模型进行细分,给出了更详细的结果。