Verma Meenakshi, Rana Abhishek, Vidyasagar Koyyana E Ch, Kalyanasundaram Dinesh, Saha Sampa
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India.
Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India.
Macromol Biosci. 2022 May;22(5):e2100454. doi: 10.1002/mabi.202100454. Epub 2022 Feb 12.
Micropatterned polymer brushes have attracted attention in several biomedical areas, i.e., tissue engineering, protein microarray, biosensors, etc., for precise arrangement of biomolecules. Herein, a facile and scalable approach is reported to create microtextured polymer brushes with the ability to generate different type of protein patterns. Nanosecond fiber laser is exploited to generate micropatterns on poly(poly(ethylene glycol) methacrylate) (polyPEGMA) brush modified Ti alloy substrate. Surface initiated atom transfer radical polymerization is employed to grow PolyPEGMA brush (11-87 nm thick) on Ti alloy surface immobilized with initiator having an initiator density (σ*) of 1.5 initiators per nm . Polymer brushes are then selectively laser ablated and their presence on nontextured area is confirmed by atomic force microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy. Spatial orientation of biomolecules is first achieved by nonspecific protein adsorption on areas ablated by the laser, via physisorption. Further, patterned brushes of polyPEGMA are modified to activated ester that gives rise to protein conjugation specifically on nonlaser ablated brush areas. Moreover, the laser ablated brush modified patterned template is also successfully utilized for generating alternate patterns of bacteria. This promising technique can be further extended to create interesting patterns of several biomolecules which are of great interest to biomedical research community.
微图案化聚合物刷在多个生物医学领域,即组织工程、蛋白质微阵列、生物传感器等方面,因其能精确排列生物分子而备受关注。本文报道了一种简便且可扩展的方法,用于制备具有生成不同类型蛋白质图案能力的微纹理聚合物刷。利用纳秒光纤激光在聚(聚乙二醇甲基丙烯酸酯)(聚PEGMA)刷修饰的钛合金基底上生成微图案。采用表面引发原子转移自由基聚合反应,在固定有引发剂密度(σ*)为每纳米1.5个引发剂的引发剂的钛合金表面生长聚PEGMA刷(厚度为11 - 87纳米)。然后对聚合物刷进行选择性激光烧蚀,并通过原子力显微镜、荧光显微镜和X射线光电子能谱确认其在未纹理化区域的存在。生物分子的空间取向首先通过物理吸附在激光烧蚀区域上进行非特异性蛋白质吸附来实现。此外,将聚PEGMA的图案化刷修饰为活性酯,从而在非激光烧蚀的刷区域特异性地实现蛋白质偶联。而且,激光烧蚀刷修饰的图案化模板也成功用于生成细菌的交替图案。这种有前景的技术可以进一步扩展,以创建对生物医学研究界极具吸引力的多种生物分子的有趣图案。