Shi Min, Tang Yufei, Zhu Xingquan, Zhuang Yuan, Lin Maohua, Liu Jianxun
IEEE Trans Cybern. 2022 Aug;52(8):7719-7731. doi: 10.1109/TCYB.2022.3143798. Epub 2022 Jul 19.
Noise and inconsistency commonly exist in real-world information networks, due to the inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most recent graph convolutional networks (GCNs) or attention GCN, by integrating node content and topology structures. However, all existing methods consider networks as error-free sources and treat feature content in each node as independent and equally important to model node relations. Noisy node content, combined with sparse features, provides essential challenges for existing methods to be used in real-world noisy networks. In this article, we propose feature-based attention GCN (FA-GCN), a feature-attention graph convolution learning framework, to handle networks with noisy and sparse node content. To tackle noise and sparse content in each node, FA-GCN first employs a long short-term memory (LSTM) network to learn dense representation for each node feature. To model interactions between neighboring nodes, a feature-attention mechanism is introduced to allow neighboring nodes to learn and vary feature importance, with respect to their connections. By using a spectral-based graph convolution aggregation process, each node is allowed to concentrate more on the most determining neighborhood features aligned with the corresponding learning task. Experiments and validations, w.r.t. different noise levels, demonstrate that FA-GCN achieves better performance than the state-of-the-art methods in both noise-free and noisy network environments.
由于人类或用户隐私问题固有的易出错性质,噪声和不一致性在现实世界的信息网络中普遍存在。迄今为止,通过整合节点内容和拓扑结构,人们已经做出了巨大努力来推进网络的特征学习,包括最新的图卷积网络(GCN)或注意力GCN。然而,所有现有方法都将网络视为无错误的源,并将每个节点中的特征内容视为独立且同等重要的,以对节点关系进行建模。有噪声的节点内容与稀疏特征相结合,给现有方法在现实世界的噪声网络中的应用带来了重大挑战。在本文中,我们提出了基于特征的注意力GCN(FA-GCN),这是一种特征注意力图卷积学习框架,用于处理具有噪声和稀疏节点内容的网络。为了解决每个节点中的噪声和稀疏内容,FA-GCN首先采用长短期记忆(LSTM)网络为每个节点特征学习密集表示。为了对相邻节点之间的交互进行建模,引入了一种特征注意力机制,使相邻节点能够根据它们的连接学习并改变特征重要性。通过基于谱的图卷积聚合过程,每个节点能够更多地关注与相应学习任务对齐的最具决定性的邻域特征。针对不同噪声水平的实验和验证表明,FA-GCN在无噪声和有噪声的网络环境中均比现有方法具有更好的性能。