Suppr超能文献

MVS-GCN:一种基于先验脑结构学习的多视图图卷积网络自闭症谱系障碍诊断方法。

MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.

机构信息

Computer Science and Engineering, Northeastern University, Shenyang, China.

Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.

出版信息

Comput Biol Med. 2022 Mar;142:105239. doi: 10.1016/j.compbiomed.2022.105239. Epub 2022 Jan 19.

Abstract

PURPOSE

Recently, functional brain networks (FBN) have been used for the classification of neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder diagnosis with FBN is a challenging task due to the high heterogeneity in subjects and the noise correlations in brain networks. Meanwhile, it is challenging for the existing deep learning models to provide interpretable insights into the brain network. We propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework.

METHOD

In this paper, we build upon graph neural network in order to learn effective representations for brain networks in an end-to-end fashion. Specifically, we present a prior brain structure learning-guided multi-view graph convolutional neural network (MVS-GCN), which collaborates the graph structure learning and multi-task graph embedding learning to improve the classification performance and identify the potential functional subnetworks.

RESULTS

To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results indicate that our MVS-GCN can achieve enhanced performance compared with state-of-the-art methods. Notably, MVS-GCN achieves an average accuracy/AUC of 69.38%/69.01% on the ABIDE dataset. Moreover, the obtained results from our model show high consistency with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed MVS-GCN model.

CONCLUSION

The proposed MVS-GCN method performs a graph embedding learning from the multi-views graph embedding learning perspective while considering eliminating the heterogeneity in brain networks and enhancing the feature representation of functional subnetworks, which can capture the essential embeddings to improve the classification performance of brain disorder diagnosis. The code is available at https://github.com/GuangqiWen/MVS-GCN.

摘要

目的

最近,功能脑网络(FBN)已被用于神经障碍的分类,如自闭症谱系障碍(ASD)。由于研究对象的高度异质性和脑网络中的噪声相关性,使用 FBN 进行神经障碍诊断是一项具有挑战性的任务。同时,现有的深度学习模型很难为脑网络提供可解释的见解。我们提出了一种机器学习方法,用于对神经障碍进行分类,同时提供一个可解释的框架。

方法

在本文中,我们基于图神经网络,以端到端的方式学习脑网络的有效表示。具体来说,我们提出了一种基于先验脑结构学习的多视图图卷积神经网络(MVS-GCN),该方法协作图结构学习和多任务图嵌入学习,以提高分类性能和识别潜在的功能子网。

结果

为了验证我们方法的有效性,我们在自闭症脑成像数据交换(ABIDE)数据集和阿尔茨海默病神经影像学倡议(ADNI)数据集上评估了所提出方法的性能。实验结果表明,与最先进的方法相比,我们的 MVS-GCN 可以实现增强的性能。值得注意的是,MVS-GCN 在 ABIDE 数据集上的平均准确率/AUC 为 69.38%/69.01%。此外,我们模型的结果与先前神经影像学衍生的 ASD 内部和网络间生物标志物的证据高度一致。所发现的子网被用作对提出的 MVS-GCN 模型的证据。

结论

所提出的 MVS-GCN 方法从多视图图嵌入学习的角度进行图嵌入学习,同时考虑消除脑网络的异质性并增强功能子网的特征表示,从而捕获基本嵌入以提高脑障碍诊断的分类性能。代码可在 https://github.com/GuangqiWen/MVS-GCN 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验